[1] A. Abbasi Molai, A. Basiri and S. Rahmany, Resolution of a system of fuzzy polynomial equations using the Grobner basis, Inf. Sci. 220 (2013) 541–558.
[2] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer-Verlag, New York, 1989.
[3] B. Buchberger, Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimensionalen polynomideal, PhD Thesis, Innsbruck, 1965.
[4] E.S. Cheb-Terrab, L.G.S. Duarte and L.A.C.P. da Mota, Computer algebra solving of second order ODEs using symmetry methods, Comp. Phy. Commun. (1997) 1–25.
[5] M. Cipu, Grobner bases and solutions to diophantine equations, Proc. 10th Int. Symp. Symb. Numeric Algorithms Sci. Comput., 2008, pp. 77–80.
[6] P. A. Clarkson and P. J. Olver, Symmetries and the Chazy equation, J. Diff. Eqns. 124 (1996) 225–246.
[7] D.A. Cox, J.B. Little and D. O’Shea. Ideals, Varieties, and Algorithms, Springer-Verlag, 3 edition, 2007.
[8] J.A. de Loera, Grobner bases and graph colorings, Cont. Alg. Geom. 36(1) (1995) 89–96.
[9] A. Hashemi and B.M.-Alizadeh. Computing minimal polynomial of matrices over algebraic extension fields, Bull. Math. Soc. Sci. Math. Roumanie Tome, 56(104) (2013) 217–228.
[10] P.E. Hydon, Symmetry Methods for Differential Equations, Cambridge University Press, 2000.
[11] D. Kapur, Y. Sun, D.K. Wang, A new algorithm for computing comprehensive Grobner systems, Proc. ISSAC’2010. ACM Press, New York, 2010, pp. 29–36.
[12] D. Kapur, Y. Sun and D. Wang, An efficient algorithm for computing a comprehensive Grobner system of a parametric polynomial system, J. Symbolic Comput. 49 (2013) 27–44.
[13] S. Lie, On the integration of a class of linear partial differential equations by means of definite integrals, translation by N.H. Ibragimov, Arch. Math. 6 (1881) 328–368.
[14] E. L. Mansfield, and P. A. Clarkson, Applications of the differential algebra package diffgrob2 to classical symmetries of differential equations, J. Symb. Comput. 23 (1997) 517–533.
[15] P. J. Olver, Applications of Lie Groups to Differential Equations, (2nd ed), Springer-Verlag, New York, 1993.
[16] L.V. Ovsiannikov, Group Analysis of Differential Equations, Academic Press, New York, 1982.
[17] M. Sala, T. Mora, L. Perret, S. Sakata and C. Traverso, Grobner Bases, Coding, and Cryptography, Springer, Berlin, 2009.
[18] H. Stephani, Differential Equations: Their solution Using Symmetries, Cambridge University Press, Cambridge, 1989.
[19] V. Weispfenning, Comprehensive Grobner bases, J. Symbolic Comput. 14 (1992) 1–29.