[1] S.M. Aslani, M.R. Delavar and S.M. Vaezpour, Inequalities of Fejer type related to generalized convex functions with applications, Int. J. Anal. Appl. 16(1) (2018) 38–49.
[2] M.R. Delavar and M. De La Sen, Some generalizations of Hermite–Hadamard type inequalities, Springer Plus 5 (1661) (2016).
[3] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett. 11(5) (1998) 91–95.
[4] T.S. Du, J.G. Liao and Y.J. Li, Properties and integral inequalities of Hadamard–Simpson type for the generalized (s, m)–preinvex functions, J. Nonlinear Sci. Appl. 9 (2016) 3112–3126.
[5] R. Hussain, A. Ali, G. Gulshan, A. Latif and M. Muddassar, Generalized coordinated integral inequalities for convex functions by way of k–fractional derivatives, Miskolc Math. Notes Submitted.
[6] S. Karamardian, The nonlinear complementarity problem with applications, Part 2, J. Optim. Theory Appl. 4 (1969) 167–181.
[7] A. Kashuri and R. Liko, Some new Hermite–Hadamard type inequalities and their applications, Stud. Sci. Math. Hung. 56(1) (2019) 103–142.
[8] A. Kashuri and R. Liko, Hermite–Hadamard type fractional integral inequalities for generalized (r; s, m, ϕ)– preinvex functions, Eur. J. Pure Appl. Math. 10(3) (2017) 495–505.
[9] A. Kashuri and R. Liko, Hermite–Hadamard type inequalities for generalized (s, m, ϕ)–preinvex functions via k–fractional integrals, Tbil. Math. J. 10(4) (2017) 73–82.
[10] A. Kashuri, R. Liko and S.S. Dragomir, Some new Gauss–Jacobi and Hermite–Hadamard type inequalities concerning (n+ 1)–differentiable generalized ((hp1, hq2); (η1, η2))–convex mappings, Tamkang J. Math. 49(4) (2018) 317–337.
[11] M. A. Khan, Y.-M. Chu, A. Kashuri and R. Liko, Hermite–Hadamard type fractional integral inequalities for MT(r;g,m,φ)–preinvex functions, J. Comput. Anal. Appl. 26(8) (2019) 1487–1503.
[12] M. A. Khan, Y.-M. Chu, A. Kashuri, R. Liko and G. Ali, Conformable fractional integrals versions of Hermite– Hadamard inequalities and their generalizations, J. Funct. Spaces 2018 (2018), Article ID 6928130, pp. 9.
[13] G.H. Lin and M. Fukushima, Some exact penalty results for nonlinear programs and mathematical programs with equilibrium constraints, J. Optim. Theory Appl. 118 (2003) 67–80.
[14] W. Liu, New integral inequalities involving beta function via P–convexity, Miskolc Math. Notes 15(2) (2014) 585–591.
[15] W.J. Liu, Some Simpson type inequalities for h–convex and (α, m)–convex functions, J. Comput. Anal. Appl. 16(5) (2014) 1005–1012.
[16] C. Luo, T.S. Du, M.A. Khan, A. Kashuri and Y. Shen, Some k–fractional integrals inequalities through generalized λφm–MT–preinvexity, J. Comput. Anal. Appl. 27(4) (2019) 690–705.
[17] S. Mubeen and G.M. Habibullah, k–Fractional integrals and applications, Int. J. Contemp. Math. Sci. 7 (2012) 89–94.
[18] M.A. Noor, K.I. Noor, M.U. Awan and S. Khan, Hermite–Hadamard inequalities for s–Godunova–Levin preinvex functions, J. Adv. Math. Stud. 7(2) (2014) 12–19.
[19] M.E. Ozdemir, S.S. Dragomir and C. Yildiz, ¨ The Hadamard’s inequality for convex function via fractional integrals, Acta Math. Sci., Ser. B, Engl. Ed. 33(5) (2013) 153–164.
[20] M.E. Ozdemir, E. Set and M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inf. 20(1) (2011) 62–73.
[21] C. Peng, C. Zhou and T. S. Du, Riemann–Liouville fractional Simpson’s inequalities through generalized (m, h1, h2) preinvexity, Ital. J. Pure Appl. Math. 38 (2017) 345–367.
[22] B.T. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Sov. Math. Dokl. 7 (1966) 72–75.
[23] S. Rashid, M.A. Latif, Z. Hammouch and Y.-M. Chu, Fractional integral inequalities for strongly h–preinvex functions for a kth order differentiable functions, Symmetry 11(1448) (2019) pp. 18.
[24] M.Z. Sarikaya and F. Ertugral, On the generalized Hermite–Hadamard inequalities, 2017 (2017)
https://www. researchgate.net/publication/321760443.
[25] M.Z. Sarikaya and H. Yildirim, On generalization of the Riesz potential, Indian J. Math. Math. Sci. 3(2) (2007) 231–235.
[26] E. Set, M.A. Noor, M.U. Awan and A. Gozpinar, Generalized Hermite–Hadamard type inequalities involving fractional integral operators, J. Inequal. Appl. 169 (2017) 1–10.
[27] D.D. Stancu, G. Coman and P. Blaga, Analiza numerica si teoria aproximarii, Cluj-Napoca: Presa Universitara Clujeana. 2 (2002).
[28] H. Wang, T.S. Du and Y. Zhang, k–fractional integral trapezium–like inequalities through (h, m)–convex and (α, m)–convex mappings, J. Inequal. Appl. 2017(311) (2017) pp. 20.
[29] T. Weir and B. Mond, Preinvex functions in multiple objective optimizations, J. Math. Anal. Appl. 136 (1988) 29–38.
[30] X.M. Zhang, Y.-M. Chu and X. H. Zhang, The Hermite–Hadamard type inequality of GA–convex functions and its applications, J. Inequal. Appl. 2010 (2010), Article ID 507560, pp. 11.
[31] Y. Zhang, T.S. Du, H. Wang, Y.J. Shen and A. Kashuri, Extensions of different type parameterized inequalities for generalized (m, h)–preinvex mappings via k–fractional integrals, J. Inequal. Appl. 2018(49) (2018) pp. 30.