[1] E.J. Wegman, and I.W. Wright, Splines in statistics, J. Amer. Statist. Assoc.78(382) (1983) 351-365.
[2] S.N. Wood, Modelling and smoothing parameter estimation with multiple quadratic penalties. J. Royal Statist. Soc.: Ser. B 62(2) (2000) 413-428.
[3] Y. J. Kim and C. Gu, Smoothing spline Gaussian regression: more scalable computation via efficient approximation, J. Royal Statist. Soc.: Ser. B 66(2) (2004) 337-356.
[4] F. O’Sullivan, A statistical perspective on ill-posed inverse problems, Statist. Sci. (1986) 502-518.
[5] C. Kelly and J. Rice, Monotone smoothing with application to dose-response curves and the assessment of synergism, Biometrics (1990) 1071-1085.
[6] B.D. Marx, and P.H. Eilers, Direct generalized additive modeling with penalized likelihood, Comput. Statist. Data Anal. 28(2) (1998) 193-209.
[7] M.P. Wand, Miscellanea. On the optimal amount of smoothing in penalized spline regression. Biometrika 86(4) (1999) 936-940.
[8] D. Ruppert, M.P. Wand, and R.J. Carroll, Semiparametric Regression, Cambridge University Press, 2003.
[9] S. Wold, M. Sjstrm, and L. Eriksson, . PLS-regression: a basic tool of chemometrics, Chemomet. Intel. Lab. Syst. 58(2) (2001)109-130.
[10] K. Tharmaratnam, G. Claeskens, C. Croux, and M. Salibin-Barrera, S-estimation for penalized regression splines, J. Comput. Graphical Statist. 19(3) (2010) 609-625.
[11] D.D. Cox, Asymptotic for M-type smoothing splines, Ann. Statist. (1983) 530-551.
[12] T.C. Lee, and H.S. Oh, Robust penalized regression splines fitting with application to additive mixed modeling, Comput. Statist. 22(1) (2007) 159-171.
[13] P.H. Eilers, and B.D. Marx, Flexible smoothing with B-splines and penalties, Statist. Sci. (1996) 89-102.
[14] B. Wang, W. Shi, and Z. Miao, Comparative analysis for robust penalized spline smoothing methods, Math. Prob. Engin. 2014 (2014).
[15] P.J. Huber, Robust Statistics, New York, John Wiley and Sons, 1981.
[16] P. Rousseeuw and V. Yohai, Robust Regression by Means of S-type Estimators, Robust and nonlinear time series analysis (pp. 256-272), Springer, New York, NY, 1984.
[17] M. Salibian-Barrera, and V. Yohai, A fast algorithm for S-type regression estimates, J. Comput. Graphical Statist. 15(2) (2006) 414-427.
[18] H. S. Oh, D. Nychka, T. Brown, and P. Charbonneau, Period analysis of variable stars by robust smoothing. Journal of the Royal Statistical Society: Series C (Applied Statistics), 53(1),(2004) 15-30.
[19] R. Finger, Investigating the performance of different estimation techniques for crop yield data analysis in crop insurance applications. Agricultural Economics, 44(2),(2013) 217-230.
[20] C. L. Mallows. More comments on Cp. Technometrics, 37(4),(1995) 362-372.
[21] D. Ruppert, M. P. Wand, and R. J. Carroll, . Semiparametric regression during 20032007. Electronic journal of statistics, 3,(2009) 1193.
[22] N. R. Draper, and H. Smith. Applied regression analysis (Vol. 326). John Wiley and Sons(1998).
[23] T. Krivobokova, Theoretical and practical aspects of penalized spline smoothing, 2006).
[24] P. Craven and G. Wahba, Smoothing noisy data with spline functions, Numerische Math. 31(4) (1978) 377-403.
[25] C.M. Hurvich, J.S. Simonoff, and C.L. Tsai, Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(2 (1998) 271-293.
[26] R.R. Wilcox, Introduction to Robust Estimation and Hypothesis Testing, Academic Press, 2011.
[27] W. Zhao, R. Zhang, J. Liu, and Y. Lv, Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression, Ann. Inst. Statist. Math. 66(1) (2014) 165-191.
[28] W. Yao and L. Li, A new regression model: modal linear regression, Scand. J. Statist. 41(3) (2014) 656-671.
[29] B.W. Silverman, Density Estimation for Statistics and Data Analysis, Vol. 26, CRC Press, 1986)
[30] S. Wglarczyk, Kernel density estimation and its application, ITM Web Conf. (Vol. 23). EDP Sciences, 2018.
[31] E. Cantoni and E. Ronchetti, Resistant selection of the smoothing parameter for smoothing splines. Statist. Comput. 11(2) (2001) 141-146.
[32] W. Yao, B. G. Lindsay, and R. Li, Local modal regression, J. Nonparametric Statist. 24(3) (2012) 647-663.