[1] W. Xiang-Jun, L. Jing-Sen, and C. Guan-Rong, Chaos synchronization of Rikitake chaotic attractor using the passive control technique, Nonlinear Dyn. 53 (2008) 45–53.
[2] S.Y. Li, S.C. Huang, C.H. Yang, and Z.M. Ge, Generating tri-chaos attractors with three positive Lyapunov exponents in new four order system via linear coupling, Nonlinear Dyn. 69 (2012) 805–816.
[3] S. Pang and Y. Liu. A new hyperchaotic system from the Lu system and its control, J. Comput. Appl. Math. 235 (2011) 2775–2789.
[4] A.T. Azer and S. Vaidyanathan, Chaos modeling and control systems design, Springer, 2015.
[5] X. Huang, Z. Wang and Y. Li, Hybrid synchronization of hyperchaotic L¨u system based on passive control, 2010 International Workshop on Chaos-Fractal Theories and Applications, IWCFTA 2010. (2010) 34–38.
[6] O.E. Rossler, An equation for hyperchaos, Phys. Lett. A. 71 (1979) 155–157.
[7] L.O. Chua and K. Kobayashi, Hyperchaos: Laboratory experiment and numerical confirmation, IEEE Trans. Circ. Syst. 33 (1986) 1143–1147.
[8] B. Cannas and S. Cincotti, Hyperchaotic behaviour of two bi-directionally coupled Chua’s circuits, Int. J. Circ. Theo. Appl. 30 (2002) 625–637.
[9] Y. Sui, Y. He, W. Yu and Y. Li, Design and circuit implementation of a five-dimensional hyperchaotic system with linear parameter, Int. J. Circ. Theo. Appl. 46 (2018) 1503–1515.
[10] B. Mezatio, M. Motchongom, B. Wafo Tekam, R. Kengne, R. Tchitnga, and A. Fomethe, A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability, Chaos Solitons Fractals 120 (2019) 100–115.
[11] L. Yang, Q. Yang and G. Chen, Hidden attractors, singularly degenerate heteroclinic orbits, multistability and physical realization of a new 6D hyperchaotic system, Comm. Nonl. Science Num. Sim. 90 (2020) 105362.
[12] V.K. Yadav, V.K. Shukla, and S. Das, Difference synchronization among three chaotic systems with exponential term and its chaos control, Chaos Solitons Fractals 12 (2019) 36–51.
[13] C.H. Chen, L.J. Sheu, H.K. Chen, J.H. Chen, H.C. Wang, Y.C. Chao and Y.K. Lin, A new hyper-chaotic system and its synchronization, Nonlinear Anal.: Real World Appl. 10 (2009) 2088–2096.
[14] G. Hu and S. Jiang. Generating hyperchaotic attractors via approximate time delayed state feedback, Int. J. Bifurc. Cha. 18 (2008) 3485–3494.
[15] Y. Li, W. K.S. Tang and G. Chen, Generating Hyperchaos via State Feedback Control. Int. J. Bifurc. Cha. 15 (2005) 3367–3375.
[16] Y. Liu, Q. Yang and G. Pang, A hyperchaotic system from the Rabinovich system, J. Comput. Appl. Math. 234 (2010) 101–113.
[17] E. Ott, C. Grebogi and J.A. Yorke, Controlling chaos, Phys. Review Lett. 64 (1990) 1196–1199.
[18] S. Lin and W. Zhang, Chattering reduced sliding mode control for a class of chaotic systems, Nonlinear Dyn. 93 (2018) 2273–2282.
[19] L.W. Zhao, J. Du and Q.W. Wang, Nonlinear analysis and chaos control of the complex dynamics of multi-market Cournot game with bounded rationality, Math. Comput. Simu. 162 (2019) 45–57.
[20] S. Fu, Y. Liu, H.n Ma and Y.G. Du, Control chaos to different stable states for a piecewise linear circuit system by a simple linear control, Chaos, Sol. Fract. 130 (2020) 109431.
[21] R. Gao, A novel track control for Lorenz system with single state feedback, Chaos Solitons Fractals 122 (2019) 236–244.
[22] Y. Wu, J. Braselton, Y. Jin and A.E. Shahat, Adaptive control of bi-directionally coupled Lorenz systems with uncertainties, J. Franklin Inst. 356 (2019) 1287–1301.
[23] A. Khan, A. Tyagi and A. In, Analysis and hyper-chaos control of a new 4-D hyper-chaotic system by using optimal and adaptive control design, Int. J. Dyn. Cont. 5 (2017) 1147–1155.
[24] W. Yu, Passive equivalence of chaos in Lorenz system. IEEE Trans. Circu. Syst. 46 (1999) 876–878.
[25] Y. Uyaroglu and S.K. Emiroglu, Passivity-based chaos control and synchronization of the four-dimensional LorenzStenflo system via one input, J. Vib. Cont. 21 (2015) 1657–1664.
[26] X. Chen and C. Liu, Passive control on a unified chaotic system, Nonlinear Anal: R. W. Appl. 11 (2010) 683–687.
[27] W. Long, D. Mei, Dynamical analysis and passive control of a new 4D chaotic system with multiple attractors, Mod. Phy. Lett. B. 32 (2018) 1850260.
[28] L.B.J. He, Dynamic analysis, circuit implementation and passive control of a novel four-dimensional chaotic system with multiscroll attractor and multiple coexisting attractors., Pramana J. Phys. 90 (2018) 1–12.
[29] U.E. Kocamaz, A. Goksu, Y. Uyaroglu and H. Taskın, Controlling Hyperchaotic Finance System with Combining Passive and Feedback Controllers, J. Inf. Tech. Cont. 47 (2018) 45–55.
[30] H. Takhi, K. Kemih, L. Moysis and C. Volos, Passivity based sliding mode control and synchronization of a perturbed uncertain unified chaotic system, Math. Comput. Simul. 181 (2021) 150–169.
[31] Z.Q. Jiao and LJ. An, Passive control and synchronization of hyperchaotic Chen system, Chin. Phys. B. 17 (2008) 492–497.
[32] A. Wolf, J.B. Swift, H.L. Swinney and J.A. Vastano, Determining Lyapunov exponents from a time series, Phys. D: Nonlinear Phen. 16 (1985) 285–317.
[33] N. Kuznetsov and V. Reitmann, Attractor dimension estimates for dynamical systems: theory and computation, Springer, 2020.
[34] J.C. Sprott, Chaos and time-series analysis, Oxford University Press, 2003.
[35] B.K. Shivamoggi, Chaos in dissipative systems, Nonlinear Dynamics and Chaotic Phenomena: An Introduction, Fluid Mechanics and Its Applications. 103, Springer, Dordrecht. 2014.