The existence of uniqueness non standard equilibrium problems

Document Type : Research Paper


Department of Mathematics, Faculty of Education for Pure Sciences, University of Thi-Qar, Thi-Qar, Iraq


In this paper, the concept of $\eta\xi$-monotonous operator is explored using KKM mapping. The  existence results and uniqueness defined on its bounded and unbounded domains are discussed. Our findings improve and develop some well-known solutions in literature.


[1] H. Nikaido and K. Isoda, Note on noncooperative convex games, Pacific J. Math. 5(51) (1955) 807–815.
[2] M. Bianchi and S. Schaible, Generalized monotone bifunctions and equilibrium problems, J. Opt. The. Appl. 90 (1996) 31–43.
[3] E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63(1) (1994) 123–145.
[4] J.L. Joly and U. Mosco, A propos de l’existence et de la regularite des solutions de certaines inequations quasi-variationnelles, J. Funct. Anal. 34(1) (1979) 107–137.
[5] S.M. Kang, S.Y. Cho and Z. Liu, Convergence of iterative sequences for generalized equilibrium problems involving inverse-strongly monotone mappings, J. Ineq. Appl. 118(2) (2010) 417–428.
[6] N.K. Mahato and C. Nahak, Equilibrium problems with generalized relaxed monotonicities in Banach spaces, Opsearch 51(2) (2014) 257-269.
[7] M.A. Noor, Auxiliary principle technique for equilibrium problems, J. Opt. Theo. Appl. 122 (2004) 371–86.
[8] H.A. Rizvi, A. Kilicman and R. Ahmad, Generalized equilibrium problem with mixed relaxed monotonicity, Sci. World J. 2014 (2014) 1–4.
[9] S. Karamardian and S. Schaible, Seven kinds of monotone maps, J. Opt. Theo. Appl. 66(1)  (1990) 37–46.
[10] M. Bianchi and R. Pini, A note on equilibrium problems with properly quasimonotone bifunctions, J. Global Opt. 20(1) (2001) 67–76.
[11] Y.P. Fang and N.J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Opt. Theo. Appl. 118(6) (2003) 327–338.
[12] M. Abbasi and M. Rezaei, Existence results for generalized-vector equilibrium problems, Iran. J. Math. Sci. Inf. 13(2) (2018) 29–43.
[13] A.A. Alwan, H.A. Naser, and A.E. Hashoosh, The solutions of mixed hemiequilibrium problem with application in Sobolev space, IOP Conf. Ser.: Mater. Sci. Engin. 571(1) (2019) 1–9.
[14] A.E. Hashoosh, Existence and uniqueness solutions for a class of hemivariational inequality, J. Math. Ineq. 1(11) (2017) 565–576.
[15] M. Alimohammady and A. E. Hashoosh, Existence theorems for monotone operator of nonstandard hemivariational inequality, Adv. Math. 10 (2015) 3205–312.
[16] O. Chadli, G. Pany and R. Mohapatra, Existence and iterative approximation method for solving mixed equilibrium problem under generalized monotonicity in Banach spaces, J. Num. Alg. 10(1) (2020) 74–91.
[17] A. Hashoosh, M. Alimohammady and M.K. Kalleji, Existence results for some equilibrium problems involving α-monotone bifunction, Int. J. Math. Math. Sci. 2016 (2016) 1–6.
[18] S.W. Sintunavarat, Mixed equilibrium Problems with weakly relaxed a monotone bifunction in Banach spaces, J. Func. Spac. Appl. 2013 (2013) 1–5.
[19] O. Chadli, Y. Chiang and S. Huang, Topological pseudomonotonicity and vector equilibrium problems, J. Math. Anal. Appl. 270(2) (2002) 435–450.
[20] B. Knaster, K. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunktsatzes fur n-dimensional simplex, J. Fund. Math. 14(1) (1929) 132–137.
[21] F. E. Browder, The solvability of non-linear functional equations, Duke Math. J. 30 (1963) 557–566.
[22] Y.P. Fang and N.J. Huang, Variational-like inequalities with generalized monotone mappings in Banach spaces, J. Opt. Theo. Appl. 118(6) (2003) 327–338.
Volume 12, Issue 1
May 2021
Pages 1251-1260
  • Receive Date: 15 February 2021
  • Revise Date: 02 March 2021
  • Accept Date: 08 March 2021