[1] A. Al-Taweel and X. Wang, The lowest-order stabilizer free weak Galerkin finite element method, Appl. Numer. Math. 157 (2020), 434–445.
[2] P. Castillo, B. Cockburn, I. Perugia and D. Schtzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems, SIAM J. Numer. Anal. 38 (2008,) 1676–1706.
[3] A. Y. Charati, H. Momeni and M. S. Cheichan, A new P0 weak Galerkin finite element scheme for second-order problems, Comp. Appl. Math. 40 (2021), 138.
[4] B. Cockburn, B. Dong, J. Guzm´an, M. Restelli, and R. Sacco, A hybridizable discontinuous Galerkin method for steady-state convection-diffusion-reaction problems, SIAM J. Sci. Comput. 31 (2009), 3827–3846.
[5] B. Cockburn, G. Kanschat and D. Schtzau, The local discontinuous Galerkin method for the Oseen equations, Math. Comput. 73 (2004), 569–593.
[6] B. Cockburn and C. W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), 2440–2463.
[7] M. Cui and S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly perturbed biharmonic equation, J. Sci. Comp. 82 (2020), 1–15.
[8] R. Griesmaier and P. Monk, Error analysis for a hybridizable discontinuous Galerkin method for the Helmholtz equation, J. Sci. Comp. 49 (2011), 291–310.
[9] R. Lin, X. Ye, S. Zhang and P. Zhu, A weak Galerkin finite element method for singularly perturbed convection-diffusion-reaction problems, SIAM J. Numer. Anal. 56 (2018), 1482–1497.
[10] L. Mu, J. Wang and X. Ye, A weak Galerkin finite element method with polynomial reduction, J. Comput. Appl. Math. 285 (2015), 45–58.
[11] S. Repin, S. Sauter and A. Smolianski, A posteriori error estimation for the Poisson equation with mixed Dirichlet Neumann boundary conditions, J. Comput. Appl. Math. 164 (2004), 601–612.
[12] J. Wang and X. Ye, A weak Galerkin finite element method for the Stokes equations, Adv. Comput. Math. 42 (2016), 155–174.
[13] J. Wang and X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math. 241 (2013), 103–115.
[14] J. Wang and X. Ye, A weak Galerkin mixed finite element method for second order elliptic problems, Math. Comput. 83 (2014), 2101–2126.
[15] C. Wang and J. Wang, Primal-dual weak Galerkin finite element methods for elliptic Cauchy problems, Comput. Math. Appl. 79 (2020), 746–763.
[16] X. Ye and S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: Part II, J. Comput. Appl. Math. 394 (2021), 113525.
[17] X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math. 371 (2020), 112699.
[18] X. Ye and S. Zhang, Numerical investigation on weak Galerkin finite elements, Int. J. Numer. Anal. Model. 17 (2020), 517–531.
[19] X. Ye and S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: Part II, J. Comput. Appl. Math. 394 (2021), 113525.