Maps preserving strong Jordan multiple $*$-product on $*$-algebras

Document Type : Research Paper

Author

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, P. O. Box 47416-1468, Babolsar, Iran

Abstract

Let $\mathcal{A}$ be an arbitrary $*$-algebra with unit I over the real or complex field $\mathbb{F} $ that contains a nontrivial idempotent $P_{1}$ and $ n\geq 1$ a natural number and $\varphi:\mathcal{A} \longrightarrow \mathcal{A}$ be a surjective map on $\mathcal{A}$ such that $\varphi$ satisfies condition
$$\varphi(P)\bullet_{n-1}\varphi(P)\bullet\varphi(A)=P\bullet_{n-1} P\bullet A,$$
 for every $ A \in\mathcal{A}$ and projection $P\in\{P_{1},~I-P_{1}\}$, where $ A\bullet_{n-1} A$ with repeat $ n-1 $ times $ A $ is the Jordan multiple $*$-product.   Then $\varphi(A)=\varphi(I)A$ for all $ A\in\mathcal{A}$ and $\varphi(I)^2=I$.

Keywords

[1] Z. Bai and S. Dou, Maps preserving product XY − Y X∗ on von Neuman algebras, J. Math. Anal. Appl. 386 (2012), 103–109.
[2] J. Cui and C.K. Li Maps preserving product XY − Y X∗ on factor von Neuman algebras, Linear Algebra Appl. 431 (2009), 833–842.
[3] L. Dai and F. Lu. Nonlinear maps preserving Jordan ∗-products, J. Math. Anal. Appl. 409 (2014), 180–188.
[4] L. Fang, Linear maps preserving the idempotency of Jordan products of operators, Linear Algebra Appl. 22 (2011), 767–779.
[5] X. Qi, Strong 2-commutativity preserving maps on prime rings, Publ. Math. Debrecen 88 (2016), no. 1-2, 119–129.
[6] L. Gonga, X. Qi, J. Shao and F. Zhang, Strong (skew) ξ-Lie commutativity preserving maps on algebras, Cogent. Math. Statist. 2 (2015), no. 1, 1003175.
[7] H. Gao, ∗-Jordan-triple muitiplicative surjective maps on B(H), J. Math. Anal. Appl. 401 (2013), 397–403.
[8] C. Li, F. Lu and X. Fang, Nonlinear mappings preserving product XY + Y X* on factor von Neuman algebra, Linear Algebra Appl. 438 (2013), no. 5, 2339–2345.
[9] M.Y. Liu and J.C. Hou, Strong 3-commutativity preserving maps on standard algebras, Acta Math. Sinica English Ser. 33 (2017), no. 12, 1659–1670.
[10] L. Molnar, Multiplicative Jordan triple isomorphisms on the self-adjoint elements of von Neuman algebras, Linear Algebra Appl. 419 (2006), 586–600.
[11] X. Qi and J. Hou, Additivity of Lie multiplictive maps on triangular algebras, Linear Multilinear Algebra 59 (2011), 391–397.
[12] X. Qi, Strong 3-commutativity preserving maps on prime rings, Publ. Math. Debrecen 88 (2016), no. 2, 119–129.
[13] A. Taghavi, F. Kolivand and H. Rohi, A note on η-Lie products preserving maps on some algebra, Mediterr. J. Math. 14 (2017), no. 1, 1–10.
[14] A. Taghavi and F. Kolivand, A note on strong skew Jordan product preserving maps on von Neuman algebras, Period. Math. Hungar. 75 (2017), no. 2, 330–335.
[15] A. Taghavi and F. Kolivand, Maps preserving strong 2-Jordan product on some algebras, Asian-Eur. J. Math. 10 (2017), no. 3, 1750044.
Volume 13, Issue 2
July 2022
Pages 221-225
  • Receive Date: 07 January 2020
  • Revise Date: 28 August 2021
  • Accept Date: 30 August 2021