[1] M. Ahues, A. Largillier and B. Limaye, Spectral Computations for Boundary Operator, CRC Press, 2001.
[2] P. Assari, Solving weakly singular integral equations utilizing the meshless local discrete collocation technique,
Alexandria Engineering J. 57 (2018), no. 4, 2497–2507.
[3] P. Assari, Thin plate spline Galerkin scheme for numerically solvingnonlinear weakly singular Fredholm integral
equations, Appl. Anal. 98 (2019), no. 11, 2064-2084.
[4] P. Assari, H. Adibi and M. Dehghan, A meshless discrete Galerkin (MDG) method for the numerical solution of
integral equations with logarithmic kernels, J. Comput. Appl. Math. 267 (2014), 160–181.
[5] P. Assari and M. Dehghan, A meshless local Galerkin method for solving Volterra integral equations deduced from
nonlinear fractional differential equations using the moving least squares technique, Appl. Numer. Math. 143
(2019), 276–299.
[6] P. Assari, F. Asadi-Mehregana and S. Cuomob, A numerical scheme for solving a class of logarithmic integral
equations arisen from two-dimensional Helmholtz equations using local thin plate splines, Appl. Math. Comput.
356 (2019), no. 1, 157–172.
[7] K.E. Atkinson, The Numerical Solutions of Integral Equations of Second Kind, Vol-4, Cambridge University
Press, 1997.
[8] Ben-yu Guo and Pen-yu Kuo, Spectral Methods and their Applications, World Scientific, Singapore, 1998.
[9] H. Brunner, Nonpolynomial spline collocation for Volterra equations with weakly singular kernels, SIAM J. Numer.
Anal. 20 (1983), no. 6, 1106–1119.
[10] H. Brunner, The numerical solution of weakly singular Volterra integral equations by collocationon graded meshes,
Math. Comput. 45 (1985), no. 172, 417–437.
[11] H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations, Vol-15, Cambridge
University Press, 2004.
[12] H. Brunner, Volterra Integral Equations: An Introduction to Theory and Applications, Cambridge: Cambridge
University Press, 2017.
[13] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral methods, Fundamentals in single domains,
Springer, 2006.
[14] Y. Cao, T. Herdman and A. Xu, A hybrid collocation method for Volterra integral equations with weakly singular
kernels, SIAM J. Numer. Anal. 41 (2003), 364–381.
[15] F. Chatelin, Spectral Approximation for Linear Operators, Academic Press, New York, 1983.
[16] Z. Chen, G. Long and G. Nelakanti, The discrete multi-projectionmethod for Fredholm integral equations of the
second kind, J. Integral Equations Appl. 19 (2007), no. 2, 143–162.
[17] E.W. Cheney, Introduction to Approximation Theory, McGraw-Hill, New York, 1966.
[18] P. Das, M.M. Sahani and G. Nelakanti, Legendre spectral projection methods for Urysohn integral equations, J.
Comput. Appl. Math. 263 (2014), 88–102.
[19] P. Das, M.M. Sahani, G. Nelakanti and G. Long, Legendre spectral projection methods for Fredholm-Hammersteinintegral equations, J. Sci. Comput. 68 (2016), no. 1, 213–230.
[20] De Hoog, Frank, and R. Weiss, On the solution of a Volterra integral equation with a weakly singular kernel, Siam
J. Math. Anal. 4 (1973), no. 4, 561–573.
[21] I.G. Graham, Galerkin methods for second kind integral equations with singularities, Math. Comput. 39 (1982),
no. 160, 519–533.
[22] C. Huang and M. Stynes, A spectral collocation method for a weakly singular Volterra integral equation of the
second kind, Adv. Comput. Math. 42 (2016), 1015–1030.
[23] K. Kant and G. Nelakanti, Approximation methods for second kind weakly singular Volterra integral equations,
J. Comput. Appl. Math. 368 (2020), 1–16.
[24] G. Long, M.M. Sahani and G. Nelakanti, Polynomially based multi-projection methods of Fredholm integral equations of the second kind, Appl. Math. Comput. 215 (2009), no. 1, 147–155.
[25] M. Mandal and G. Nelakanti, Superconvergence results of Legendre spectral projection methods for FredholmHammerstein integral equations, J. Comput. Appl. Math. 319 (2017), 423–439.
[26] M. Mandal and G. Nelakanti, Superconvergence results of Legendre spectral projection methods for Volterra integral
equations of second kind, J. Comput. Appl. Math. 37 (2018), no. 4, 4007–4022.
[27] M. Mandal and G. Nelakanti, Superconvergence results for weakly singular Fredholm-Hammerstein integral equations, Numer. Funct. Anal. Optim. 40 (2019), no. 5, 548–570.
[28] B.L. Panigrahi and G. Nelakanti, Legendre Galerkin method for weakly singular Fredholm integral equations and
the corresponding eigenvalue problem, J. Appl. Math. Comput. 43 (2013), 175–197.
[29] B.L. Panigrahi, G. Long and G. Nelakanti, Legendre multi-projection methods for solving eigen value problems for
a compact integral operator, J. Comput. Appl. Math. 239 (2013), 135–151.
[30] L. Schumaker, Spline Functions: Basic Theory, Wiley, Newyork, 1981.
[31] C. Wagner, On the numerical solution of Volterra integral equations, J Math. Phys. 32 (1953), 289–301.
[32] Zhang Xiao-yong, Jacobi spectral method for the second-kind Volterra integral equations with a weakly singular
kernel, Appl. Math. Modell. 39 (2015), no. 15, 4421–4431.