[1] H.A. Abbass, Marriage in honey bees optimization – a haplometrosis polygynous swarming approach, Evol. Comput. Proc. 2001 Congress, 2001, p. 207–214.
[2] B. Alatas, Artificial chemical reaction optimization algorithm for global optimization, Expert Syst. Appl. 38 (2011), 13170–13180.
[3] A. Askarzadeh and A. Rezazadeh, A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer, Int. J. Energy Res. 37 (2013), no. 10, 1196–1204.
[4] M. Dorigo, M. Birattari and T. Stutzle, Ant colony optimization, IEEE Comput. Intell. Magaz. 1 (2006), no. 4, 28–39.
[5] O.K. Erol and I. Eksin, A new optimization method: big bang–big crunch, Adv. Eng. Softw. 37 (2006), 106–111.
[6] A.V. Fiacco and G.P. McCormick, Nonlinear programming: Sequential unconstrained minimization techniques, New York: Wiley, 1968.
[7] R.A. Formato, Central force optimization: a new metaheuristic with applications in applied electromagnetics, Prog. Electromag. Res. 77, (2007) 425–491.
[8] D. Fogel, Artificial intelligence through simulated evolution, Wiley-IEEE Press, 2009.
[9] A.H. Gandomi, A.H. Alavi, H. Krill, Krill herd: A new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), no. 12, 4831–4845.
[10] A. Hatamlou, Black hole: a new heuristic optimization approach for data clustering, Inf. Sci. 222 (2013), 175–184.
[11] N. Hansen, S.D. M¨uller and P. Koumoutsakos, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMAES), Evol. Compu. 11 (2003), 1–18.
[12] S. He, S.Q.H. Wu and J.R. Saunders, A novel group search optimizer inspired by animal behavioural ecology, IEEE Int. Conf. Evol. Comput. 2006, p 1272–1278.
[13] S. He, Q. Henry Wu and J.R. Saunders, Group search optimizer: an optimization algorithm inspired by animal searching behavior, IEEE Trans. Evol. Comput. 13 (2009), no. 5, 973–990.
[14] A. Kaveh and M. Khayatazad, A new meta-heuristic method: ray optimization, Comput. Struct. 112 (2012), 283–94.
[15] A. Kaveh and S. Talatahari, A novel heuristic optimization method: charged system search, Acta Mech. 213 (2010), 267–89.
[16] J. Kennedy and R. Eberhart, Particle swarm optimization, in Neural Networks, Proc. IEEE Int. Conf. 1995, p. 1942–1948.
[17] J.R. Koza, Genetic programming, 1992.
[18] D. Simon, Biogeography-based optimization, Evol. Comput. IEEE Trans. 12 (2008), 702–13.
[19] J.J. Liang, B.Y. Qu and P.N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization, Comput. Intell. Lab. Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore 635 (2013), 490.
[20] X. Li, A new intelligent optimization-artificial fish swarm algorithm, PhD Thesis, Zhejiang University of Zhejiang, China, 2003.
[21] X. Lu and Y. Zhou, A novel global convergence algorithm: bee collecting pollen algorithm, Int. Conf. Intell. Comput. Springer, Berlin, Heidelberg, 2008, p. 518–525.
[22] S.A. Mirjalili, S.M. Mirjalili and A. Lewis, Grey wolf optimizer, Adv. Engin. Software 69 (2014), 46–61.
[23] S.A. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-Based Syst. 89 (2015), 228–249.
[24] S.A. Mirjalili and A. Lewis, The whale optimization algorithm, Adv. Engin. Software 95 (2016), 51–67.
[25] F.F. Moghaddam, R.F. Moghaddam and M. Cheriet, Curved space optimization: a random search based on general relativity theory, arXiv, preprint arXiv, 1208. 2214 2012.
[26] A. Mucherino and O. Seref, A novel metaheuristic search for global optimization, Proc. Conf. Data Min. Syst. Anal. Optim. Biomed. 2007, p. 28–30.
[27] W-T. Pan, A new fruit fly optimization algorithm: taking the financial distress model as an example, Knowl-Based Syst. 26 (2012), 69–74.
[28] P.C. Pinto, T.A. Runkler and J.M. Sousa, Wasp swarm algorithm for dynamic MAX-SAT problems, Int. Conf. Adapt. Natural Comput. Algor. Springer, Berlin, Heidelberg, 2007, p. 350–357.
[29] E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, a gravitational search algorithm, Inf. Sci. 179 (2009), 2232–2248.
[30] G. Rechenberg, Evolution strategy, Comput. Intell. Imitat. Life 1 (1994).
[31] M. Roth and W. Stephen Termite, A swarm intelligent routing algorithm for mobile wireless ad-hoc networks, Stigmergic Optim. 2005, p 155–184.
[32] H.-P. Schwefel, Evolution and optimum seeking, New York: Wiley, 1995.
[33] Y. Shiqin, J. Jianjun and Y. Guangxing, A dolphin partner optimization, IEEE WRI Glob. Cong. Intell. Syst. 1 (2009), 124–128.
[34] H. Shah-Hosseini, Principal components analysis by the galaxy-based search algorithm: a novel metaheuristic for continuous optimisation, Int. J. Comput. Sci. Eng. 6 (2011), 132–40.
[35] R. Storn and K. Price, Differential evolution: A simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11 (1997), 341–59.
[36] X. Yao, Y. Liu and G. Lin, Evolutionary programming made faster. Evolut Comput, IEEE Trans. 3 (1999), 82–102.
[37] X-S. Yang, A new metaheuristic bat-inspired algorithm, Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), ed., Springer, 2010, p. 65–74.
[38] X-S. Yang and S. Deb, Cuckoo search via L´evy flights, Nature Biologically Inspired Computing, NaBIC, World Congress, 2009, p. 210–14.
[39] X-S. Yang, Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspired Comput. 2 (2010), 78–84.