[1] M. Bastero-Gil and A. Berera, Warm inflation model building, Int. J. Mod. Phys. A 24 (2009), no. 12, 2207–2240.
[2] M. Bastero-Gil, A. Berera and J.G. Rosa, Warming up brane-antibrane inflation, Phys. Rev. D 84 (2011), no.
10, 103503.
[3] A. Berera, Warm inflation at arbitrary adiabaticity: A model, an existence proof for inflationary dynamics in
quantum field theory, Nucl. Phys. B 585 (2000), 666.
[4] A. Berera, Thermal properties of an inflationary universe, Phys. Rev. D 54 (2001), 2519.
[5] A. Berera and L.Z. Fang, Thermally induced density perturbation in the inflation era, Phys. Rev. Lett. 74 (1995),
1912–1915.
[6] A. Berera, M. Gleiser, R.O. Ramos, Strong dissipative behavior in quantum field theory, Phys. Rev. D 58 (1998),
no. 12, 123508.
[7] A. Berera and T.W. Kephart, The ubiquitous inflation in string-inspired models, Phys. Rev. Lett. 83 (1999), no.
6, 1084.
[8] A. Berera and R.O. Ramos, Dynamics of intetacting scalar fields in expanding space-time, Phys. Rev. D 71 (2005),
no. 2, 023513.
[9] D. Boyanovsky, H.J. de Vega, R. Holman, D.S. Lee and A. Singh, Dissipation via particle production in scalar
field theorise, Phys. Rev. D 51 (1995), no. 8, 4419.
[10] D. Boyanovsky, R. Holman and S.P. Kumar, Inflaton decay in De Sitter space-time, Phys. Rev. D 56 (1997), no.
4, 1958.
[11] B. Chen, Y. Wang and W. Xue, Inflationary non Gaussianity from thermal fluctuations, J. Cosmol. Astro. Phys.
2008 (2008), no. 5, 014.
[12] E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart and D. Wands, False vacuum inflation with Einstein gravity,
Phys. Rev. D 49 (1994), 6410.
[13] L.Z. Fang, Entropy generation in the early universe by dissipative processes near the Higgs phase transition, Phys.
Lett. B 95 (1999), 154–156.
[14] S. Gupta, A. Berera, A.F. Heavens and S. Matarrese, Non-Gaussian signature in the cosmic background radiation
from warm infalation, Phys. Rev D 66 (2002), 0205152.
[15] A.H. Guth, The inflation universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23
(1982), 347.
[16] M. Gleiser and R.O. Ramos, Microphysical approach to nonequilibrium dynamics of quantum fields, Phys. Rev.
D 50 (1994), no. 4, 2441.
[17] L.M.H. Hall, I.G. Moss and A. Berera, Scalar perturbation spectra from warm inflation, Phys. Rev. D. 69 (2004),
083525.
[18] R. Herrera and M. Olivares, Warm-Logamediate inflationary universe model, Int. J. Mod. Phys. D 21 (2012), no.
5, 1250047.
[19] A. Hosoya and M. Sakagami, Time development Of Higgs filed at finite temperature, Phys. Rev. D 29 (1984), no.
10, 2228.
[20] B.L. Hu, J.P. Paz and Y. Zhang, The origin of structure in the universe, Edited by E. Gunzing and P. Nardone,
Kluwer, Dordrecht, 1993.
[21] I.D. Lawrie, Perturbative nonequilibrium dynamics of phase transitions in an expanding universe, Phys. D 60
(1999), no. 6, 063510.[22] D. Lee and D. Boyanovsky, Dynamics of phase transitions induced by a heat bath, Nucl. Phys. B 406 (1993), no.
3, 631–654.
[23] A.D. Linde, Hybrid inflation, Phys. Rev. D 49 (1994), 748.
[24] H. Mishra, S. Mohanty and A. Nautiyal, Warm natural inflation, Phys. Lett. B 710 (2015), 254.
[25] M. Morikawa, Classical fluctuations in dissipative quantum systems, Phys. Rev. D 33 (1986), no. 12, 3607.
[26] M. Morikawa and M. Sasaki, Entropy production in an expanding universe, Phys. Lett. B 165 (1985), no. 1-3,
59–62.
[27] I. G. Moss and C. Xiong, Non-Gaussianity in fluctuation from warm inflation, J. Cosmol. Astro. Phys. 2007
(2007), no. 4, 007.
[28] I.G. Moss and C. Xiong, On the consistency of warm inflation, J. Cosmol. Astro. Phys. 2008 (2008), no. 11,
0811–023.
[29] I.G. Moss and T.Yeomans, Non-gaussianity in the strong regime of warm inflation, J. Cosmol. Astro. Phys. 2011
(2011), no. 8, 009.
[30] A. Ringwald, Evolution equation for the expectation value of a scalar field in spatially flat RW universes, Ann.
Phys. 177 (1987), no. 1 129–166.
[31] A.N. Taylor and A. Berera, Perturbation spectra in the warm inflationary scenario, Phys. Rev. D 62 (2000),
83517.
[32] J. Yokoyama and A.D. Lide, Is warm inflation possible?, Phys. Rev. D 60 (1999), 980–940.