[1] E. Ahmed, A.M.A. El-Sayed and H.A.A. El-Saka, On some Routh-Hurwitz conditions for fractional order differential equations and their applications in Lorenz, R¨ossler, Chua and Chen systems, Phys. Lett. A 358 (2006), no. 1, 1–4.
[2] A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci. 20 (2016), no. 2, 763–769.
[3] E.J. Chow, M.A. Rolfes, A. O’Halloran, N.B. Alden, E.J. Anderson, N.M. Bennett, L. Billing, E. Dufort, P.D. Kirley, A. George, L. Irizarry, S. Kim, R. Lynfield, P. Ryan, W. Schaffner, H.K. Talbot, A. Thomas, K. YouseyHindes, C. Reed and S. Garg, Respiratory and nonrespiratory diagnoses associated with influenza in hospitalized adults, JAMA network open 3 (2020), no. 3, 201323-201323.
[4] R. Casagrandi, L. Bolzoni, S. A. Levin and V. Andreasen, The SIRC model and influenza A, Math. Biosci. 200 (2006), 152–169.
[5] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1 (2015), no. 2, 73–85.
[6] M. Caputo and M. Fabrizio, On the singular kernels for fractional derivatives. Some applications to partial differential equations, Progr. Fract. Differ. Appl. 7 (2021), 79–82.
[7] K. Diethelm, The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, Springer, Heidelberg, 2010.
[8] K. Diethelm and A.D. Freed, The Frac PECE subroutine for the numerical solution of differential equations of fractional order, Forsch. wissenschaft. Rechnen 1999 (1998), 57–71.
[9] P. Driessche and J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), 29–48.
[10] M.A. Dokuyucu, E. Celik, H. Bulut and H.M. Baskonus, Cancer treatment model with the Caputo-Fabrizio fractional derivative, Eur. Phys. J. Plus 133 (2018), no. 3, 1–6.
[11] M. El-Shahed and A. Alsaedi, The fractional SIRC model and Influenza A, Math. Probl. Eng. 2011 (2011), 1-9.
[12] J.F. Gomez-Aguilar, J.J. Rosales-Garcia, J.J. Bernal-Alvarado, T. Cordova-Fraga and R. Guzman-Cabrera, Fractional mechanical oscillators, Rev. Mex. Fis. 58 (2012), no. 4, 348–352.
[13] G. Gonzalez-Parra, A.J. Arenas and B.M. Chen-Charpentier, A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1), Math. Methods Appl. Sci. 37 (2014), no. 15, 2218–2226.
[14] K. Hattaf and N. Yousfi, Mathematical model of influenza AH1N1 infection, Adv, Stud. Biol. 1 (2009), no. 8, 383–390.
[15] M. Higazy and M. A. Alyami, New Caputo-Fabrizio fractional order SEIASqEqHR model for COVID-19 epidemic transmission with genetic algorithm based control strategy, Alexandria Engin. J. 59 (2020), no. 6, 4719–4736.
[16] R. Hilfer, Applications of fractional calculus in physics, World Scientific World Publishing Company, Singapore, 2000.
[17] L. Jodar, R.J. Villanueva, A.J. Arenas and G.C. Gonzalez, Nonstandard numerical methods for a mathematical model for influenza disease, Math. Comput. Simul. 79 (2008), no. 3, 622–633.
[18] M.M. Khader and M.M. Babatin, Numerical treatment for solving fractional SIRC model and influenza A, Comp. Appl. Math. 33 (2014), no. 3, 543-556.
[19] M.M. Khader, N.H. Sweilam, A.M. S. Mahdy and N.K. Abdel Moniem, Numerical simulation for the fractional SIRC model and Influenza A, Appl. Math. Inf. Sci. 8 (2014), no. 3, 1029–1036.
[20] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Elsevier, Amsterdam, 2006.
[21] P. Krishnapriya, M. Pitchaimani and T.M. Witten, Mathematical analysis of an influenza A epidemic model with discrete delay, J. Comput. Appl. Math. 324 (2017), 155–172.
[22] H. Li, J. Cheng, H-B. Li and S.-M. Zhong, Stability analysis of a fractional order linear system described by the Caputo-Fabrizio derivative, Math. 7 (2019), 200.
[23] H. Li and S. Guo, Dynamics of a SIRC epidemiological model, Electron. J. Differ. Equ. 2017 (2017), 1-18.
[24] L. Li, C. Sun and J. Jia, Optimal control of a delayed SIRC epidemic model with saturated incidence rate, Optim. Control. Appl. Met. 40 (2018), no. 2, 367–374.
[25] J. Losada and J.J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl. 1 (2015), no. 2, 87–92.
[26] J. Losada and J. . Nieto, Fractional integral associated to fractional derivatives with nonsingular kernels, Progr. Fract. Differ. Appl. 7 (2021), 137-143.
[27] R.L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl. 59 (2010), 1586–1593.
[28] R.L. Magin, Fractional calculus in bioengineering, Begell. House. Inc., Redding, CT, 2006.
[29] R.L. Magin, Fractional calculus in bioengineering, part 2. Crit, Rev. Biomed. Eng. 32 (2004), 105–193.
[30] R.L. Magin, Fractional calculus in bioengineering, part 3. Crit. Rev. Biomed. Eng. 32 (2004), 195–378.
[31] C. Milici, G. Draganescu and J.T. Machado, Introduction to fractional differential equations Nonlinear Systems and Complexity, Springer, New York, 2019.
[32] M. Moghadami, A narrative review of influenza: a seasonal and pandemic disease, Iran. J. Med. Sci. 42 (2017), 2–13.
[33] E.J. Moore, S. Sirisubtawee and S. Koonprasert, A Caputo–Fabrizio fractional differential equation model for HIV/AIDS with treatment compartment, Adv. Differ. Equ. 2019 (2019), no. 1, 1–20.
[34] K.B. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw. 41 (2010), 9–12.
[35] K. M. Owolabi and A. Atangana, Analysis and application of new fractional Adams-Bashforth scheme with Caputo Fabrizio derivative, Chaos, Solitons and Fractals, 105 (2017), 111–119.
[36] P. Palese and J. F. Young, Variation of influenza A, B, and C viruses, Science 215 (1982), 1468–1474.
[37] W. Pan, T. Li and S. Ali, A fractional-order epidemic model for the simulation of outbreaks of Ebola, Adv. Differ. Equ. 2021 (2021), 161.
[38] V. Petrova and C. Russell, The evolution of seasonal influenza viruses, Nat. Rev. Microbiol 16 (2018), 47–60.
[39] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
[40] S. Rezapour and H. Mohammadi, A study on the AH1N1/09 influenza transmission model with the fractional Caputo–Fabrizio derivative, Adv. Differ. Equ. 2020 (2020), no. 1, 488.
[41] A. Shaikh, A. Tassaddiq, K.S. Nisar and D. Baleanu, Analysis of differential equations involving Caputo-Fabrizio fractional operator and its applications to reaction-diffusion equations, Adv. Differ. Equ. 2019 (2019), no. 1, 1–14.
[42] S. Ullah, M.A. Khan, M. Farooq, Z. Hamouch and D. Baleanu, A fractional model for the dynamics of tuberculosis infection using Caputo–Fabrizio derivative, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no 3.
[43] M.Z. Ullah, A.K. Alzahrani and D. Baleanu, An efficient numerical technique for a new fractional tuberculosis model with nonsingular derivative operator, J. Taibah Univ. Sci. 13 (2019), no 1, 1147–1157.
[44] T. Zhang, T. Ding, N. Gao and Y. Song, Dynamical behavior of a stochastic SIRC model for influenza A, Symmetry 12 (2020), 745.