[1] A.D. Athanassopoulos, Goal programming & data envelopment analysis (GoDEA) for target-based multi-level
planning: allocating central grants to the Greek local authorities, Eur. J. Oper. Res. 87 (1995), 535–550.
[2] R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data
envelopment analysis, Manag. Sci. 30 (1984), 1078–1092.
[3] G. Brown and R.J. Quinn, Investigating the relationship between fraction proficiency and success in algebra, Austr.
Math. Teacher 63 (2007), 8–15.
[4] A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res.
2 (1978), 429–444.
[5] L. Chen and Y.-M. Wang, DEA target setting approach within the cross efficiency framework, Omega 96 (2020),
102072.
[6] W.D. Cook, J.L. Ruiz, I. Sirvent and J. Zhu, Within-group common benchmarking using DEA, Eur. J. Oper. Res.
256 (2017), 901–910.
[7] W.W. Cooper, L.M. Seiford and K. Tone, Data envelopment analysis: a comprehensive text with models, applications, references and DEA-solver software, Springer, 2007.
[8] A. Emrouznejad and G.-L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA:
1978–2016, Socio-economic Plann. Sci. 61 (2018), 4–8.
[9] R. F¨are, S. Grosskopf and C.K. Lovell, The measurement of efficiency of production, Springer Science & Business
Media, 1985.
[10] B. Golany, An interactive MOLP procedure for the extension of DEA to effectiveness analysis, J. Oper. Res. Soc.
39 (1988), 725–734.
[11] P.C. Honebein, Exploring the galaxy question: The influence of situation and first principles on designers’ judgments about useful instructional methods, Educ. Technol. Res. Dev. 67 (2019), 665–689.
[12] R. Joseph and C.M. Reigeluth, The systemic change process in education: A conceptual framework, Contemp.
Educ. Technol. 1 (2010), no. 2, 97–117.
[13] J. Lahdenper¨a, L. Postareff, and J. R¨am¨o, Supporting quality of learning in university mathematics: A comparison
of two instructional designs, Int. J. Res. Undergrad. Math. Educ. 5 (2019), 75–96.
[14] K. Lenz, A. Dreher, L. Holz¨apfel and G. Wittmann, Are conceptual knowledge and procedural knowledge empirically separable? The case of fractions, Br. J. Educ. Psych. 90 (2020), 809–829.
[15] N.P. Loc, D.H. Tong, and P.T. Chau, Identifying the concept fraction of primary school students: The investigation
in Vietnam, Educ. Res. Rev. 12 (2017), 531–539.
[16] F.H. Lotfi, A. Hatami-Marbini, P.J. Agrell, N. Aghayi and K. Gholami, Allocating fixed resources and setting
targets using a common-weights DEA approach, Comput. Indust. Engin. 64 (2013), 631–640.
[17] S. Malone, K. Altmeyer, M. Vogel and R. Br¨unken, Homogeneous and heterogeneous multiple representations in
equation-solving problems: An eye-tracking study, J. Comput. Ass. Learn. 36 (2020), 781–798.
[18] A. Mardani, E.K. Zavadskas, D. Streimikiene, A. Jusoh and M. Khoshnoudi, A comprehensive review of data
envelopment analysis (DEA) approach in energy efficiency, Renew. Sustain. Energy Rev. 70 (2017), 1298–1322.[19] M.D. Merrill, Instructional transaction theory (ITT): Instructional design based on knowledge objects, Inst.-Design
Theor. Models 2 (1997), 397–424.
[20] M.D. Merrill, First principles of instruction, Educ. Technol. Rres. Dev. 50 (2002), 43–59.
[21] G.P.A. Oka, Pengembangan bahan ajar interaktif berbasis component display theory (CDT) pada mata kuliah
multimedia jurusan teknologi pendidikan FIP UNDIKSHA, J. IMEDTECH 1 (2017), no. 1, 46–58.
[22] P. Peykani, E. Mohammadi, M. Rostamy-Malkhalifeh, and F. Hosseinzadeh Lotfi, Fuzzy data envelopment analysis
approach for ranking of stocks with an application to Tehran stock exchange, Adv. Math. Finance Appl, 4 (2019),
31–43.
[23] S. Razipour-GhalehJough, F. Hosseinzadeh Lotfi, G. Jahanshahloo, M. Rostamy-Malkhalifeh and H. Sharafi,
Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis,
Ann. Oper. Res. 288 (2020).
[24] F. Reinhold, S. Hoch, B. Werner, J. Richter-Gebert and K. Reiss, Learning fractions with and without educational
technology: What matters for high-achieving and low-achieving students?, Learn. Inst. 65 (2020), 101264.
[25] J. Shin and S.J. Lee, The alignment of student fraction learning with textbooks in Korea and the United States,
J. Math. Behav. 51 (2018), 129–149.
[26] R.S. Siegler, G.J. Duncan, P.E. Davis-Kean, K. Duckworth, A. Claessens, M. Engel, M.I. Susperreguy and M.
Chen, Early predictors of high school mathematics achievement, Psych. Sci. 23 (2012), 691–697.
[27] J. Simarmata, A. Djohar, J. Purba and E.A. Juanda, Design of a blended learning environment based on Merrill’s
principles, J. Phys.: Conf.Ser. 954 (2018), no. 1, 012005.
[28] S. Strother, J.L. Brendefur, K. Thiede and S. Appleton, Five key ideas to teach fractions and decimals with
understanding, Adv. Soc. Sci. Res. J. 3 (2016), no. 2.
[29] E. Thanassoulis and R. Dyson, Estimating preferred target input-output levels using data envelopment analysis,
Eur. J. Oper. Res. 56 (1992), 80-97.
[30] J. Torbeyns, M. Schneider, Z. Xin and R.S. Siegler, Bridging the gap: Fraction understanding is central to
mathematics achievement in students from three different continents, Learn. Inst. 37 (2015), 5–13.
[31] J. Zhu, Quantitative models for performance evaluation and benchmarking: data envelopment analysis with spreadsheets, Springer, 2014.
[32] Chair of trustees governance statement MCB university press retirement and death benefit scheme (’the Scheme’),
Libr Hi Tech, 38 (2019), 1–12.