[1] S.M. Abdulla, N.B. Al-Dabagh and O. Zakaria, Identify features and parameters to devise an accurate intrusion detection system using artificial neural network, World Acad. Sci. Eng. Technol. 46 (2010), no. 10, 626-–630.
[2] Y. Alagrash, A. Drebee and N. Zirjawi, Comparing the area of data mining algorithms in network intrusion detection, J. Info. Secur. 11 (2020), 1–18.
[3] O. Banos, R. Garcia, J.A. Holgado-Terriza, M. Damas, H. Pomares, I. Rojas and C. Villalonga, mHealthDroid: a novel framework for agile development of mobile health applications, Int. Workshop on Ambient Assisted Living, Springer, Cham. 2014, p. 91–98.
[4] X. Chen, M. Ma and A. Liu, Dynamic power management and adaptive packet size selection for IoT in e-healthcare, Comput. Electr. Eng. 65 (2018), 357-–375.
[5] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu and Y. Liu, Deep learning for sensor-based human activity recognition: Overview, challenges, and opportunities, ACM Comput. Surv. 54 (2021), no. 4, 1—40.
[6] T. Cover and P. Hart, Nearest neighbour pattern classification, IT 13 (1967), no. 1, 1–27.
[7] N. Dua, S.N. Singh and V.B. Semwal, Multi-input CNN-GRU based human activity recognition using wearable sensors, Comput. 103 (2021), no. 7, 1461–1478.
[8] N. Farnaaz and M.A. Jabbar, Random forest modeling for network intrusion detection system, In Proc. Comput. Sci. 89 (2016), 213-–217.
[9] A. Gozzoli, Practical guide to hyperparameters optimization for deep learning models, FloydHub, 2018.
[10] S. Hamouda, A. Hassan, M.E. Wahed, M. Ail and O. Farouk, Tuning to optimize SVM approach for breast cancer diagnosis with blood analysis data, Available SSRN 3537067, (2020).
[11] I. Hanif, Implementing extreme gradient boosting (XGBoost) classifier to improve customer churn prediction, Proce. 1st Int. Conf. Statist. Anal., ICSA 2019, Bogor, Indonesia, European Alliance for Innovation, 2019.
[12] M.M. Hassan, S. Huda, M.Z. Uddin, A. Almogren and M. Alrubaian, Human activity recognition from body sensor data using deep learning, J. Med. Syst. 42 (2018), no. 6, pp. 1—8.
[13] A.A. Hassan, W.M. Shah, M.F.I. Othman and H.A.H. Hassan, Evaluate the performance of K-Means and the fuzzy C-Means algorithms to formation balanced clusters in wireless sensor networks, Int. J. Electr. Comput. Eng. 10 (2020).
[14] J.-S. Jeong, O. Han and Y.-Y. You, A design characteristics of smart healthcare system as the IoT application, Indian J. Sci. Technol. 9 (2016), no. 37.
[15] J. Jha and L. Ragha, Intrusion detection system using support vector machine, Int. J. Appl. Inf. Syst. 3 (2013), 25-–30
[16] D. Kaur, A comparative study of various distance measures for software fault prediction, arXiv preprint arXiv:1411.7474, 17 (2014), no. 3.
[17] T. Kohonen, The self-organizing mp, Proc. IEEE, 78 (1990), no. 9, 1464–1480.
[18] D.D. Lewis, Naive (Bayes) at forty: The independence assumption in information retrieval, Eur. Conf. Machine Learning, 1998, p. 4–15.
[19] Z.K. Maseer, R. Yusof, N. Bahaman, S.A. Mostafa and C.F.M. Foozy, Benchmarking of machine learning for anomaly-based intrusion detection systems in the CICIDS2017 dataset, IEEE Access 9 (2021), 22351–22370.
[20] M. Mathuria, Decision tree analysis on j48 algorithm for data mining, Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3 (2013), no. 6.
[21] T.K. Moon, The expectation-maximization algorithm, IEEE Signal Process. Mag. 13 (1996), no. 6, 47—60.
[22] P. Praveen and B. Rama, A k-means clustering algorithm on numeric data, Int. J. Pure Appl. Math. 117 (2017), no. 7.
[23] J.R. Quinlan, Bagging, boosting, and C4. 5. In Aaai/iaai 1 (1996), 725—730.
[24] A.M. Rahmani, T.N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang and P. Liljeberg, Exploiting smart eHealth gateways at the edge of healthcare Internet-of-Things: A fog computing approach, Futur. Gener. Comput. Syst. 78 (2018), 641-–658.
[25] C.A. Ronao and S.-B. Cho, Human activity recognition with smartphone sensors using deep learning neural networks, Expert Syst. Appl. 59 (2016), 235-–244.
[26] A. Subasi, D.H. Dammas, R.D. Alghamdi, R.A. Makawi, E.A. Albiety, T. Brahimi and A. Sarirete, Sensor based human activity recognition using AdaBoost ensemble classifier, Proc. Comput. Sci. 140 (2018), 104—111.
[27] V. Subramaniyaswamy, G. Manogaran, R. Logesh, V. Vijayakumar, N. Chilamkurti, D. Malathi and N. Senthilselvan, An ontology-driven personalized food recommendation in IoT-based healthcare system, J. Supercomput. 75 (2019), no. 6, 3184—3216.
[28] J. Sun, Y. Fu, S. Li, J. He, C. Xu and L. Tan, Sequential human activity recognition based on deep convolutional network and extreme learning machine using wearable sensors, J. Sensors 2018 (2018).
[29] H. Tahir, A. Kanwer and M. Junaid, Internet of things (IoT): An overview of applications and security issues regarding implementation, Int. J. Multidiscip. Sci. Eng. 7 (2016), no. 1, 14-–22.
[30] Q. Teng, K. Wang, L. Zhang and J. He, The layer-wise training convolutional neural networks using local loss for sensor-based human activity recognition, IEEE Sens. J. 20 (2020), no. 13, 7265—7274.
[31] P. Verma, S.K. Sood and S. Kalra, Cloud-centric IoT based student healthcare monitoring framework, J. Ambient Intell. Humaniz. Comput. 9 (2018), no. 5, 1293—1309.
[32] Y. Wang, H. Yu and S. Cang, A survey on wearable sensor modality centred human activity recognition in health care, Expert Syst. Appl. 137 (2019), 167–190.
[33] T. Wu, F. Wu, J.-M. Redoute and M.R. Yuce, An autonomous wireless body area network implementation towards IoT connected healthcare applications, IEEE Access 5 (2017), 11413—11422.
[34] K. Xia, J. Huang and H. Wang, LSTM-CNN architecture for human activity recognition, IEEE Access, 8 (2020), 56855-–56866.
[35] Y. Zhao, R. Yang, G. Chevalier, X. Xu and Z. Zhang, Deep residual bidir-LSTM for human activity recognition using wearable sensors, Math. Probl. Eng. 2018 (2018).