[1] A. Al-fatlawia, M. A. Zahra, and H. Rassool, Simulation of optical fiber cable regarding bandwidth limitations, Int. J. Nonlinear Anal. Appl. 12 (2021), no. Special Issue, 1159–1174.
[2] P. Assimakopoulos, A. Nkansah, and N. Gomes, Use of commercial access point employing spatial diversity in a distributed antenna network with different fiber lengths, 2008 Int. Topical Meeting on Microwave Photonics Jointly held with the 2008 Asia-Pacific Microwave Photonics Conference, IEEE, 2008, pp. 189–192.
[3] H. B¨olcskei, D. Gesbert, C. Papadias, and A. V. der Veen, Space-time wireless systems: from array processing to mimo communications, Cambridge University Press, 2006.
[4] T. Chrysikos, G. Georgopoulos, and S. Kotsopoulos, Site-specific validation of ITU indoor path loss model at 2.4 GHz, 2009 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks & Workshops, IEEE, 2009, pp. 1–6.
[5] M. Crisp, S. Li, A. Watts, R. Penty, and I. White, Uplink and downlink coverage improvements of 802.11 g signals using a distributed antenna network, J. Lightwave Technol. 25 (2007), no. 11, 3388–3395.
[6] G. Gordon, M. Crisp, R. Penty, and I. White, Experimental evaluation of layout designs for 3×3 mimo-enabled radio-over-fibre distributed antenna systems, IEEE Trans. Veh. Technol. 63 (2013), no. 2, 643–653.
[7] A. Hekkala, M. Lasanen, I. Harjula, L. Viera, N. Gomes, A. Nkansah, S. Bittner, F. Diehm, and V. Kotzsch, Analysis of and compensation for non-ideal of links in das [coordinated and distributed mimo], IEEE Wireless Commun. 17 (2010), 52–59.
[8] IEEE, Std. 802.11g/d1.1-2001, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Further Higher-Speed Physical Layer Extension in the 2.4 GHz band, 2003.
[9] C. Kim and J. Lee, Dynamic rate-adaptive mimo mode switching between spatial multiplexing and diversity, EURASIP J. Wireless Commun. Network. 2012 (2012), no. 1, 1–12.
[10] A. Kobyakov, D. Thelen, A. Chamarti, M. Sauer, and J. Winters, Mimo radio signals over fiber in picocells for increased wlan coverage, OFC/NFOEC 2008-2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, IEEE, 2008, pp. 1–3.
[11] W. Lee, Vertical vs. horizontal separations for diversity antennas, Cellular Bus. (1991), 56–60, http://www.commscope.com/docs/antenna_separation_article_ta.
[12] Y. S. Mahmood and G. A. Qasmarrogy, Capacity analysis of multiple-input-multiple-output system over rayleigh and rician fading channel, Cihan Univ.-Erbil Sci. J. 3 (2019), no. 2, 70–74.
[13] M. Sauer and A. Kobyakov, Fiber-radio antenna feeding for mimo systems, Asia Optical Fiber Communication and Optoelectronic Exposition and Conference, Optical Society of America, 2008, p. SaJ6.
[14] M. Tolstrup, Indoor radio planning: A practical guide for gsm, DCS, UMTS, HSPA and LTE, vol. Second Edition, John
Wiley & Sons, Inc., 2011.
[15] E. Vitucci, L. Tarlazzi, F. Fuschini, P. Faccin, and V. Degli-Esposti, Interleaved-mimo das for indoor radio coverage: concept and performance assessment, IEEE Trans. Antennas Propag. 62 (2014), no. 6, 3299–3309.
[16] T. Yamakami, T. Higashino, K. Tsukamoto, and S. Komaki, An experimental investigation of applying mimo to rof ubiquitous antenna system, 2008 International Topical Meeting on Microwave Photonics jointly held with the 2008 Asia-Pacific Microwave Photonics Conference, IEEE, 2008, pp. 201–204.
[17] K. Zhu, M. Crisp, S. He, R. Penty, and I. White, Mimo system capacity improvements using radio-over-fibre distributed antenna system technology, Optical Fiber Commun. Conf., Optical Society of America, 2011, pp. 1–3.