[1] M.A. Abdlhusein, New Approach in Graph Domination, Ph.D. Thesis, University of Baghdad, Iraq, 2020.
[2] M.A. Abdlhusein, Doubly connected bi-domination in graphs, Discrete Math. Algor. Appl. 13 (2021), no. 2, 2150009.
[3] M.A. Abdlhusein, Stability of inverse pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 1009–1016.
[5] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algor. Appl. 13 (2021), no. 4, 2150038.
[6] M.A. Abdlhusein and M.N. Al-Harere, New parameter of inverse domination in graphs, Indian J. Pure Appl. Math. 52 (2021), no. 1, 281–288.
[7] M.A. Abdlhusein and M.N. Al-Harere, Doubly connected pitchfork domination and its inverse in graphs, TWMS J. App. Eng. Math. 12 (2022), no. 1, 82-–91.
[8] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and its inverse for corona and join operations in graphs, Proc. Int. Math. Sci. 1 (2019), no. 2, 51–55.
[9] M.A. Abdlhusein and M.N. Al-Harere, Pitchfork domination and its inverse for complement graphs, Proc. Instit. Appl. Math. 9 (2020), no. 1, 13–17.
[10] M.A. Abdlhusein and M.N. Al-Harere, Some modified types of pitchfork domination and its inverse, Bol. Soc. Paran. Mat. 40 (2022), 1–9.
[11] M.A. Abdlhusein and Z.H. Abdulhasan, Modified types of triple effect domination, reprinted, 2022.
[12] M.A. Abdlhusein and Z.H. Abdulhasan, Stability and some results of triple effect domination, Int. J. Nonlinear Anal. Appl. Accepted to appear, (2022).
[13] Z.H. Abdulhasan and M.A. Abdlhusein, Triple effect domination in graphs, AIP Conf. Proc. 2022, 2386, 060013.
[14] Z.H. Abdulhasan and M.A. Abdlhusein, An inverse triple effect domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 913–919.
[15] M.N. Al-Harere and M.A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algor. Appl. 12 (2020), no. 2, 2050025.
[16] M.N. Al-Harere and A.T. Breesam, Further Results on Bi-Domination in Graph, AIP Conf. Proc. 2096 (2019), no. 1, 020013-020013-9.
[17] L.K. Alzaki, M.A. Abdlhusein and A.K. Yousif, Stability of (1, 2)-total pitchfork domination, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 265–274.
[18] F. Harary, Graph theory, Addison-Wesley, Reading, MA, 1969.
[19] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker Inc. New York, 1998.
[20] T.W. Haynes, M.A. Henning and P. Zhang, A survey of stratified domination in graphs, Discrete Math. 309 (2009), 5806–5819.
[21] M.K. Idan and M.A. Abdlhusein, Some properties of discrete topological graph, IOP Conf. Proc. (2022), accepted to appear.
[22] A.A. Jabor and A.A. Omran, Domination in discrete topological graph, AIP Conf. Proc. 2138 (2019), 030006.
[23] A.A. Jabor and A.A. Omran, Topological domination in graph theory, AIP Conf. Proc. 2334 (2021), 020010.
[24] Z.N. Jweir and M.A. Abdlhusein, Appling some dominating parameters on the topological graph, IOP Conf. Proc., accepted to appear. (2022).
[25] Z.N. Jweir and M.A. Abdlhusein, Constructing new topological graph with several properties, reprinted, 2022.
[26] S.S. Kahat, A.A. Omran and M.N. Al-Harere, Fuzzy equality co-neighborhood domination of graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 537–545.
[27] S.J. Radhi, M.A. Abdlhusein and A.E. Hashoosh, The arrow domination in graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 473–480.
[28] S.J. Radhi, M.A. Abdlhusein and A.E. Hashoosh, Some modified types of arrow domination, Int. J. Nonlinear Anal. Appl. 13 (2021), no. 1, 1451–1461.