[1] R.M. Ali, S.K. Lee, V. Ravichandran and S. Supramaniam, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Appl. Math. Lett. 25 (2012), 344–351.
[2] D.A. Brannan and J.G. Clunie, Aspects of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham, Academic Press, New York and London, 1980.
[3] S. Bulut, Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions, Filomat 30 (2016), no. 6, 1567–1575.
[4] P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, New York, 1983.
[5] B.A. Frasin, Coefficient bounds for certain classes of bi-univalent functions, Hact. J. Math. Stat. 43 (2014), no. 3, 383–389.
[6] B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), no. 9, 1569–1573.
[7] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63–68.
[8] N. Magesh and J. Yamini, Coefficient bounds for a certain subclasses of bi-univalent functions, Int. Math. Forum 8 (2013), no. 27, 1337–1344.
[9] G. Murugusundaramoorthy, N. Mangesh and V. Prameela, Coefficient bounds for certain subclasses of bi-univalent functions, Abstr. Appl. Anal. 2013 (2013), Article ID 573017, 3 pages.
[10] U.H. Naik and A.B. Patil, On initial coefficient inequalities for certain new subclasses of bi-univalent functions, J. Egyptian Math. Soc. 25 (2017), no. 3, 291–293.
[11] E. Netanyahu, The minimal distance of the image boundary for the origin and the second coefficient of a univalent function in |z| < 1, Arch. Ration. Mech. Anal. 32 (1969), 100–112.
[12] A.B. Patil and U.H. Naik, Estimates on initial coefficients of certain subclasses of bi-univalent functions associated with Al-Oboudi differential operator, J. Indian Math. Soc. 84 (2017), no. 1-2, 73–80.
[13] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109–115.
[14] S.A. Saleh, A.H. El-Qadeem and M.A. Mamon, Some estimation about Tayler-Maclaurin coefficients of generalized subclasses of bi-univalent functions, Tbilisi Math. J. 13 (2020), no. 4, 23–32.
[15] H.M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat. 28 (2016), no. 5-6, 693–706.
[16] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), no. 10, 1188–1192.
[17] H.M. Srivastava, G. Murugusundaramoorthy and N. Mangesh, Certain subclasses of bi-univalent functions associated with the Hohlov operator, Glob. J. Math. Anal. 1 (2013), no. 2, 67–73.
[18] B. Srutha Keerthi and B. Raja, Coefficient inequality for certain new subclasses of analytic bi-univalent functions, Abstr. Appl. Anal. 3 (2013), no. 1, 1–10.
[19] Q.H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990–994.