[1] A. Abd Aswhad, Efficient iterative method for solving Korteweg-devries equations, Iraqi J. Sci. 60 (2019), no. 7, 1575–1583.
[2] A. Ahmed, B. Salam, M. Mohammad, A. Akgul and S.H. Khoshnaw, Analysis coronavirus disease (COVID-19) model using numerical approaches and logistic model, Aims Bioeng 7 (2020), no. 3, 130–146.
[3] O. Diekmann, H. Heesterbeek and T. Britton, Mathematical tools for understanding infectious disease dynamics, Princeton University Press, New York, 2012.
[4] R.W. Huisen, S.H. Abd Almjeed and A.S. Mohammed, A reliable iterative transform method for solving an epidemic model, Iraqi J. Sci. 62 (2021), no. 12, 4839–4846.
[5] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics. II.–The problem of endemicity, Proc. Royal Soc. London. Ser. A, 138 (1932), no. 834, 55–83.
[6] W.O. Kermack and A.G. McKendrick, Contributions to the mathematical theory of epidemics–I. 1927, Bull. Math. Bio. 53 (1991), no. 1–2, 33–55.
[7] M. Kretzschmar, H.S. Van, J. Wallinga and W.J. Van, Ring vaccination and smallpox control, Emerg. Infect. Dis. 10 (2004), no. 5, 832.
[8] M. Mandal, S. Jana, S.K. Nandi, A. Khatua, S. Adak and T. Kar, A model-based study on the dynamics of COVID-19: Prediction and control, Chaos, Solitons Fractals 136 (2020), 109–889.
[9] M.A. Mohammed, A.I.N. Ibrahim, Z. Siri and N.F.M. Noor, Mean Monte Carlo finite difference method for random sampling of a nonlinear epidemic system, Sociol. Meth. Res. 48 (2019), no. 1, 34–61.
[10] S.J. Mohammed and M.A. Mohammed, Runge-kutta numerical method for solving nonlinear influenza model, J. Phys.: Conf. Ser. 1879 (2021), no. 3, 032040.
[11] S.J. Mohammed and M.A. Mohammed, Mean Latin hypercube runge-kutta method to solve the influenza model, Iraqi J. Sci. 63 (2022), no. 3.
[12] M.A. Mohammed, N.F.M. Noor, A.I.N. Ibrahim and Z. Siri, A non-conventional hybrid numerical approach with multi-dimensional random sampling for cocaine abuse in Spain, Int. J. Biomath. 11 (2018), no. 8, 1850110.
[13] M.A. Mohammed, N.F.M. Noor, Z. Siri and A.I.N. Ibrahim, Numerical solution for weight reduction model due to health campaigns in Spain, AIP Conf. Proc. 1682 (2015), pp. 020005.
[14] D.A. Mohammed, H.M. Tawfeeq, K.M. Ali and H.M. Rostam, Analysis and prediction of COVID-19 outbreak by the numerical modelling, Iraqi J. Sci. 62 (2021), no. 5, 1452–1459.
[15] A.A. Mohsen, H.F. Al-Husseiny, X. Zhou and K. Hattaf, Global stability of COVID-19 model involving the quarantine strategy and media coverage effects, AIMS Public Health 7 (2020), no. 3, 587.
[16] H.S. Rodrigues, M.T.T. Monteiro and D.F. Torres, Vaccination models and optimal control strategies to dengue, Math. Biosci. 247 (2014), 1–12.
[17] M.A. Sabaa, Modified numerical simulation technique for solving nonlinear epidemic models, Master’s Thesis, University of Baghdad, Baghdad, Iraq, 2019.
[18] M.A. Sabaa and M.A. Mohammed, Approximate solutions of nonlinear smoking habit model, Iraqi J. Sci. 61 (2020), no. 2, 435–443.
[19] M.A. Sabaa, M.A. Mohammed and S.H. Abd Almjeed, Approximate solutions for alcohol consumption model in Spain, Ibn AL-Haitham J. Pure Appl. Sci. 32 (2019), no. 3, 153–164.
[20] R. Whitehill and C.D. Clark, Developing perfectly matched layer method to solve heat equation numerically, Poster, Fort Hays State University, 2020.
[23] M. Yavuz, F.O. Co¸sar, F. G¨unay and F.N. ¨ Ozdemir, ¨ A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign, Open J. Modell. Simul. 9 (2021), no. 3, 299–321.