[1] J.D. Murray, Mathematical Biololgy I: An Introduction, Third Edition, Springer-Verlag, 2002.
[2] Y. Kang and L. Wedekin, Dynamics of intraguild predation model with generalist or specialist predator, J. Math. Biol. 67 (2013), 1227–1259.
[3] R.D. Holt and G.A. Polis, A theoritical framework for intraguild predation, Amer. Nat. 149 (1997), 745–764.
[4] J. Brodeur and J.A. Rosenheim, Intraguild interactions in aphid parasitoids, Entomol. Exp. Appl. 97 (2000), 93–108.
[5] C.J. Bampfylde and M.A. Lewis, Biological control through intraguild predation: case studies in pest control, invasive species and range expansion, Bull. Math. Biol. 69 (2007), 1031–1066.
[6] C. Ganguli, T.K. Kar and P.K. Mondal, Optimal harvesting of a prey-predator model with variable carrying capacity, Int. J. Biomath. 10 (2017), 1750069.
[7] GC. Layek, An Introduction to Dynamical Systems and Chaos, Springer, 2015.
[8] S.H. Strogatz, Nonlinear Dynamics and Chaos: with application to Physics, Biology, Chemistry and Engineering, Taylor and Francis, United Kingdom, 1994.
[9] L. Perko, Differential Equations and Dynamical Systems, Third Edition, Springer, 2001.
[10] T.K. Kar, Modelling and analysis of a harvested prey-predator system incorporating a prey refuge, J. Comput. Appl. Math. 185 (2006), 19–33.
[11] P. Amarasekare, Coexistence of intraguild predators and prey in resource-rich environments, Ecology 89 (2008), 2786–2797.
[12] K.S. Chaudhuri, A bioeconomic model of harvesting, a multispecies fishery, Ecol. Model. 32 (1986), 267–279.
[13] F.M. Hilker and H. Malchow, Strange periodic attractor in a prey-predator system with infected prey, Math. Popul. Stud. 13 (2006), 119–134.
[14] C.W. Clark, Mathematical Bioeconomics: The optimal management of renewable resources, Wiley, New York, 1976.
[15] J. Smith, Models in Ecology, Cambridge University Press, Cambridge, 1974.
[16] A.A. Berryman, The origin and evolution of predator-prey theory, Ecology 73 (1992), 1530–1535.
[17] H.C. Wei, Y.Y. Chen, J.T. Lin and S.F. Hwang, The dynamics of an intraguild predation model with prey switching, AIP Conf. Proc. 1978 (2018), 470012.
[18] T.I. Potter, A.C. Greenville and C. Dickman, Assessing the potential for intraguild predation among taxonomically disparate micro-carnivores: marsupials and arthropods, R. Soc. Open Sci. 5 (2018), 171872.
[19] S. Wang, U. Brose and D. Gravel, Intraguild predation enhances biodiversity and functioning in complex food webs, Ecology 100 (2019), e02616.
[20] S. Pirzadfard, N. Zandi-Sohani, F. Sohrabi and A. Rajabpour, Intraguild interactions of a generalist predator, Orius albidipennis, with two Bemisia tabaci parasitoids, Int. J. Trop. Insect. Sci. 40 (2020), 259–265.
[21] R. Han, B. Dai and Y. Chen, Pattern formation in a diffusive intraguild predation model with nonlocal interaction effects, AIP Adv. 9 (2019) 035046.
[22] K. Sarkar, N. Ali and L.N. Guin, Dynamical complexity in a tritrophic food chain model with prey harvesting, Discontinuity, Nonlinearity, Complexity 10 (2021), 705–722.
[23] HL. Smith, Monotone dynamical systems: An introduction to the theory of competitive and cooperative systems, Amer. Math. Soc. Providence, Rhode Island, 2008.
[24] L.N. Guin and P.K. Mandal, Spatiotemporal dynamics of reaction-diffusion models of interacting populations, Appl. Math. Model. 38 (2014), 4417–4427.
[25] L.N. Guin, Existence of spatial patterns in a predator-prey model with self- and cross-diffusion, Appl. Math. Comput. 226 (2014), 320–335.
[26] L.N. Guin, S. Djilali and S. Chakravarty, Cross-diffusion-driven instability in an interacting species model with prey refuge, Chaos Solit. Fractals 153 (2021), 111501.
[27] R. Han, L.N. Guin and S. Acharya, Complex dynamics in a reaction-cross-diffusion model with refuge depending on predator-prey encounters, Eur. Phys. J. Plus 137 (2022), 1–27.