[1] E.H.L. Aarts and P.J.M. van Laarhoven, Simulated annealing, Simulated Annealing: Theory and applications,
Springer, 1987.
[2] M.H. Ahmadi, M.A. Ahmadi, R. Bayat, M. Ashouri and M. Feidt, Thermo-economic optimization of Stirling heat
pump by using non-dominated sorting genetic algorithm, Energy Conver. Manag. 91 (2015), 315–322.
[3] M.H. Ahmadi, M.A. Ahmadi, F. Pourfayaz and M. Bidi, Thermodynamic analysis and optimization for an irreversible heat pump working on reversed Brayton cycle, Energy Conver. Manag. 110 (2016), 260–267.
[4] S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, Two effective hybrid metaheuristic algorithms for minimization of multimodal functions, Int. J. Comput. Math. 88 (2011), no. 11, 2415–2428.
[5] S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, An efficient and practically robust hybrid metaheuristic
algorithm for solving fuzzy bus terminal location problems, Asia-Pacific J. Oper. Res. 29 (2012), no. 2, 1250009.
[6] S. Babaie-Kafaki, R. Ghanbari and N. Mahdavi-Amiri, Hybridizations of genetic algorithms and neighborhood
search metaheuristics for fuzzy bus terminal location problems, Appl. Soft Comput. 46 (2016), 220–229.
[7] S. Babaie-Kafaki and S. Rezaee, A randomized nonmonotone adaptive trust region method based on the simulated
annealing strategy for unconstrained optimization, Int. J. Intell. Comput. Cyber. 12 (2019), no. 3, 389–399.
[8] S. Babaie-Kafaki and S. Rezaee, A randomized adaptive trust region line search method, Int. J. Optim. Control:
Theor. Appl. (IJOCTA) 10 (2020), no. 2, 259–263.
[9] D. Bertsimas and J.N. Tsitsiklis, Introduction to linear optimization, vol. 6, Athena Scientific Belmont, MA, 1997.[10] P.A. Castillo, J. Carpio, J.J. Merelo, A. Prieto, V. Rivas and G. Romero, G-Prop: Global optimization of multilayer
perceptrons using GAs, Neurocomput. 35 (2000), no. 1-4, 149–163.
[11] Y. Da and X.R. Ge, An improved PSO-based ANN with simulated annealing technique, Neurocomput. 63 (2005),
527–533.
[12] J.A. Duffe and W.A. Beckham, Solar engineering of thermal processes, 3, Wiley New York, 2006.
[13] W.L. Dong, X. Li and Z. Peng, A simulated annealing-based Barzilai–Borwein gradient method for unconstrained
optimization problems, Asia-Pacific J. Oper. Res. 36 (2019), no. 4, 195–207.
[14] B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res. 13 (1988), no. 2, 311–329.
[15] D. Henderson, Sh. H. Jacobson and A.W. Johnson, The theory and practice of simulated annealing, Handbook of
metaheuristics, Springer, 2003.
[16] J.S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE Trans. Syst. Man Cyber. 23 (1993), no.
3, 665–685.
[17] J.S.R. Jang, C.T. Sun and E. Mizutani, Neuro-fuzzy and soft computing: A computational approach to learning
and machine intelligence, IEEE Trans. Automatic Control 42 (1997), no. 10, 1482–1484.
[18] M. Kahani, M.H. Ahmadi, A. Tatar and M. Sadeghzadeh, Development of multilayer perceptron artificial neural
network (MLP-ANN) and least square support vector machine (LSSVM) models to predict Nusselt number and
pressure drop of TiO2/water nanofluid flows through non-straight pathways, Numer. Heat Transfer Part A: Appl.
74 (2018), no. 4, 1190–1206.
[19] D. Karaboga and B. Basturk, A powerful and efficient algorithm for numericalfunction optimization: artificial
bee colony (ABC) algorithm, J. Glob. Optim. 39 (2007), no. 3, 459–471.
[20] A. Kasaeian, M. Ghalamchi, M.H. Ahmadi and M. Ghalamchi, GMDH algorithm for modeling the outlet temperatures of a solar chimney based on the ambient temperature, Mech. Ind. 18 (2017), no. 2, 216.
[21] A.Y.S. Lam and V.O.K. Li, Chemical-reaction-inspired metaheuristic for optimization, IEEE Trans. Evo. Comput.
14 (2009), no. 3, 381–399.
[22] T. Liao, K. Socha, M.A. Montes de Oca, T. Sttzle and M. Dorigo, Ant colony optimization for mixed-variable
optimization problems, IEEE Trans. Evo. Comput. 18 (2013), no. 4, 503–518.
[23] R. Loni, A. Kasaeian, K. Shahverdi, E. Askari Asli-Ardeh, B. Ghobadian and M.H. Ahmadi, ANN model to
predict the performance of parabolic dish collector with tubular cavity receiver, Mech. Ind. 18 (2017), no. 4, 408.
[24] I.G. Manuel, R.P. Luis and H.L. Jesus ,Evaluation of thermal parameters and simulation of a solar-powered,
solid-soition chiller whith a CPC collector, Renewable Energy 34 (2009), no. 3, 570–577.
[25] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of state calculations by fast computing
machines, J. Chem. Phys. 21 (1953), no. 6, 1087–1092.
[26] N.A. Mohammad, Sh.R. Aliakbari and A.H. Eshraghniaye Jahromi, A particle swarm-BFGS algorithm for nonlinear programming problems, Comput. Oper. Res. 40 (2013), no. 4, 963–972.
[27] A. Mohebbi, M. Taheri and A. Soltani, A neural network for predicting saturated liquid density using genetic
algorithm for pure and mixed refrigerants, Int. J. Refrig. 31 (2008), no. 8, 1317–1327.
[28] M. Mustapha, M.W. Mustafa, S.N. Khalid, I. Abubakar and A.M. Abdilahi, Correlation and wavelet-based shortterm load forecasting using Anfis, Indian J. Sci. Technol. 9 (2016), no. 46, 1–8.
[29] J.M. Ortiz-Rodriguez, M. del Rosario Martinez-Blanco and H. Vega-Carrillo, Evolutionary artificial neural networks in neutron spectrometry, IntechOpen, 2011.
[30] M.M. Papari, F. Yousefi, J. Moghadasi, H. Karimi and A. Campo, Modeling thermal conductivity augmentation
of nanofluids using diffusion neural networks, Int. J. Thermal Sci. 50 (2011), no. 1, 44–52.
[31] I. Pence, M.C. Cesmeli, F.A. Senel and B. Cetisli, A new unconstrained global optimization method based on
clustering and parabolic approximation, Expert Syst. Appl. 55 (2016), 493–507.
[32] R. Prasad Parouha and K. Nath Das, A memory based differential evolution algorithm for unconstrained opti-mization, Appl. Soft Comput. 38 (2016), 501–517.
[33] E. Rashedi, H. Nezamabadi–pour and S. Saryazdi, GSA: a gravitational search algorithm, Information sciences,
179 (2009), no. 13, 2232–2248.
[34] C.R. Reeves, Modern heuristic techniques, Modern Heuristic Search Meth. 1 (1996), 1–25.
[35] R.M. Rizk-Allah, E.M. Zaki and A.A. El-Sawy, Hybridizing ant colony optimization with firefly algorithm for
unconstrained optimization problems, Appl. Math. Comput. 224 (2013), 473–483.
[36] M. Roozbeh, S. Babaie-Kafaki and A. Naeimi Sadigh, A heuristic approach to combat multicollinearity in least
trimmed squares regression analysis, Appl. Math. Model. 57 (2018), 105–120.
[37] S.A. Sadatsakkak, M.H. Ahmadi, R. Bayat, S.M. Pourkiaei and M. Feidt, Optimization density power and thermal
efficiency of an endoreversible Braysson cycle by using non-dominated sorting genetic algorithm, Energy Conver.
Manag. 93 (2015), 31–39.
[38] J.R.M. Smits, W.J. Melssen, L.M.C. Buydens and G. Kateman, Using artificial neural networks for solving
chemical problems: part I. Multi-layer feed-forward networks, , Chemom. Intell. Lab. Syst. 22 (1994), no. 2,
165–189.
[39] M. Tahani, M. Vakili and S. Khosrojerdi, Experimental Evaluation and ANN Modeling of Thermal Conductivity
of Graphene Oxide Nanoplatelets/Deionized Water Nanofluid, Int. Commun. Heat Mass Transfer 76 (2016), no.
76, 358–365.
[40] S. Toghyani, M.H. Ahmadi, A. Kasaeian, A.H. Mohammadi, Artificial neural network, ANN-PSO and ANN-ICA
for modelling the Stirling engine, Int. J. Ambient Energy 37 (2016), no. 5, 456–468.
[41] M.D. Toksari, Ant colony optimization for finding the global minimum, Appl. Math. Comput. 176 (2006), no. 1,
308–316.
[42] M.D. Toksari, A heuristic approach to find the global optimum of function, J. Comput. Appl. Math. 209 (2007),
no. 2, 160–166.
[43] M.D. Toksari, Minimizing the multimodal functions with ant colony optimization approach, Expert Syst. Appl.
36 (2009), no. 3, 6030–6035.
[44] M.D. Toksari and E. Guner, Solving the unconstrained optimization problem by a variable neighborhood search,
J. Math. Anal. Appl. 328 (2007), no. 2, 1178–1187.
[45] V.J.P. Vilar, L.X. Pinho, A.M.A. Pintor and R. Boaventura, Treatment of textile waste waters by solar-driven
advanced oxidation processes, Solar Energy 85 (2011), no. 9, 1927–1934.
[46] Z. Wang, C.D. Massimo, M.T. Tham and A.J. Morris, A procedure for determining the topology of multilayer feed
forward neural networks, Neural Networks 7 (1994), no. 2, 291–300.
[47] X.S. Yang, Nature-inspired optimization algorithms, J. Comput. Sci. 46 (2020), 101–104.