[1] B. Barzegar, S. Habibian and M. Fazlollah Nejad, Heuristic algorithms for task scheduling in cloud computing using combined particle warm optimization and bat algorithms, J. Adv. Comput. Res. 10 (2019), no. 3, 83–95.
[2] B. Barzegar, H. Motameni and A. Movaghar, EATSDCD: A green energy-aware scheduling algorithm for parallel task-based application using clustering, duplication and DVFS technique in cloud datacenters, J. Intell. Fuzzy Syst. 36 (2019), no. 6, 5135–5152.
[3] B. Barzegar and H. Shirgahi, Advanced reservation and scheduling in grid computing systems by gravitational emulation local search algorithm, Amer. J. Sci. Res. 18 (2011), 62–70.
[4] A. Beloglazov, J. Abawajy and R. Buyya, Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing, Future Gen. Comput. Syst. 28 (2012), no. 5, 755–768.
[5] R. Buyya, R. Ranjan and R.N. Calheiros, Modeling and simulation of scalable Cloud computing environments and the CloudSim toolkit: Challenges and opportunities, Int. Conf. High Perform. Comput. Simul. IEEE, 2009.
[6] Y. Ding, X. Qin, L. Liu and T. Wang, Energy efficient scheduling of virtual machines in cloud with deadline constraint, Future Gen. Comput. Syst. 50 (2015), 62–74.
[7] S. Fatehi, H. Motameni, B. Barzegar and M. Golsorkhtabaramiri, Energy-aware multi-objective algorithm for task scheduling on DVFS-enabled cloud datacenters using fuzzy NSGA-II, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 2303–2331.
[8] F. Juarez, J. Ejarque and R.M. Badia, Dynamic energy-aware scheduling for parallel task-based application in cloud computing, Future Gen. Comput. Syst. 78 (2018), 257–271.
[9] E. Kabir, J. Hu, H. Wang and G. Zhuo, A novel statistical technique for intrusion detection systems, Future Gen. Comput. Syst. 79 (2018), 303–318.
[10] H. Kasahara, Standard task graph set, 2004.” URL http://www. kasahara. elec. Waseda. ac. jp/schedule/index.html.
[11] J. Masoudi, B. Barzegar and H. Motameni, Energy-aware virtual machine allocation in DVFS-enabled cloud data centers, IEEE Access 10 (2021), 3617–3630.
[12] Z. Peng, B. Barzegar, M. Yarahmadi, H. Motameni and P. Pirouzmand, Energy-aware scheduling of workflow using a heuristic method on green cloud, Sci. Prog. 2020 (2020).
[13] X. Tang, K. Li, R. Li and B. Veeravalli, Reliability-aware scheduling strategy for heterogeneous distributed computing systems, J. Parall. Distrib. Comput. 70 (2010), no. 9, 941–952.
[14] H. Topcuoglu, S. Hariri and M.Y. Wu, Performance-effective and low-complexity task scheduling for heterogeneous computing, IEEE Trans. Parall. Distrib. Syst. 13 (2002), no. 3, 260–274.
[15] J.D. Ullman, NP-complete scheduling problems, J. Comput. Syst. Sci. 10 (1975), no. 3, 384–393.
[16] V. Venkatachalam and M. Franz, Power reduction techniques for microprocessor systems, ACM Comput. Surveys (CSUR) 37 (2005), no. 3, 195–237.
[17] L. Wang, S.U. Khan, D. Chen, J. Ko lodziej, R. Ranjan, C.Z. Xu and A. Zomaya, Energy-aware parallel task scheduling in a cluster, Future Gen. Comput. Syst. 29 (2013), no. 7, 1661–1670.
[18] C.M. Wu, R.S. Chang and H.Y. Chan, A green energy-efficient scheduling algorithm using the DVFS technique for cloud datacenters, Future Gen. Comput. Syst. 37 (2014), 141–147.
[19] D. Zhu, R. Melhem and B.R. Childers, Scheduling with dynamic voltage/speed adjustment using slack reclamation in multiprocessor real-time systems, IEEE Trans. Parall. Distrib. Syst. 14 (2003, no. 7, 686–700.
[20] Z. Zong, A. Manzanares, B. Stinar and X. Qin, Energy-aware duplication strategies for scheduling precedence constrained parallel tasks on clusters, IEEE Int. Conf. Cluster Comput. IEEE, 2006.