[1] T. Abdeljawad, F. Madjidi, F. Jarad, and N. Sene, On dynamic systems in the frame of singular function dependent
kernel fractional derivatives, Math. 7 (2019), no. 10.
[2] A.Traore and N. Sene, Model of economic growth in the context of fractional derivative, Alexandria Engin. J. 59
(2020), no. 6, 4843–4850.
[3] C. Burgos, J.-C. Cort´es, L. Villafuerte, and R.-J. Villanueva, Mean square convergent numerical solutions of
random fractional differential equations: Approximations of moments and density, J. Comput. Appl. Math. 378
(2020), 112925.
[4] L.S. Dong, N.V. Hoa, and H. Vu, Existence and Ulam stability for random fractional integro-differential equation,
Afr. Mat. 31 (2020), no. 7, 1283–1294[5] A.M.A. El-Sayed, E.E. Eladdad, and H.F.A. Madkour, On the Cauchy problem of a delay stochastic differential
equation of arbitrary (fractional) orders, Frac. Differ. Cal. 5 (2015), no. 2, 163–170.
[6] H.Y. Frah and Z. Dahmani, Solvability for a sequential system of random fractional differential equations of
hermite type, J. Interdiscip. Math. (2022), 1–21.
[7] H.Y. Frah, Z. Dahmani, L. Tabharit, and A. Abdelnebi, High order random fractional differential equations:
Existence, uniqueness and data dependence, J. Interdiscip. Math. 24 (2021), no. 8, 2121–2138.
[8] F.M. Hafiz, The fractional calculus for some stochastic processes, Stoch. Anal. Appl. 22 (2004), no. 2, 507–523.
[9] F.M. Hafiz, Ahmed M.A. El-Sayed, and M.A. El-Tawil, On a stochastic fractional calculus, Frac. Cal. Appl. Anal.
4 (2001), no. 1, 81–90.
[10] D. Henry, Geometric theory of semilinear parabolic equations, Springer, Berlin, Heidelberg, 1981.
[11] R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Company.
[12] V. Ho, Random fractional functional differential equations, Int. J. Nonlinear Anal. Appl. 7 (2016), no. 2, 253–267.
[13] C. Ionescu, A. Lopes, D. Copot, J.A.T. Machado, and J.H.T. Bates, The role of fractional calculus in modeling
biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul. 51 (2017), 141–159.
[14] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and applications of fractional differential equations,
Elsevier Science Inc., 2006.
[15] V. Lakshmikantham, S. Leela, and J. Vasundhara Devi, Theory of fractional dynamic systems, Cambridge Scientific Publishers, 2009.
[16] V. Lupulescu and S.K. Ntouyas, Random fractional differential equations, Int. Electron. J. Pure Appl. Math. 4
(2012), no. 2, 119–136.
[17] V. Lupulescu, D. O’Regan, and G. ur Rahman, Existence results for random fractional differential equations,
Opuscula Math. 34 (2014), no. 4, 813–825.
[18] N. Sene and A. Ndiaye, On class of fractional-order chaotic or hyperchaotic systems in the context of the Caputo
fractional-order derivative, J. Math. 2020 (2020), 8815377.
[19] N. Sene and G. Srivastava, Generalized Mittag-Leffler input stability of the fractional differential equations, Symmetry 11 (2019), no. 5.
[20] X. Shen, Applications of fractional calculus in chemical engineering, Diss. Universit´e d’Ottawa/University of
Ottawa, 2018.
[21] I. Slimane and Z. Dahmani, A continuous and fractional derivative dependance of random differential equations
with nonlocal conditions, J. Interdiscip. Math. 24 (2021), no. 6, 1457–1470.
[22] T. T. Soong, Random differential equations in science and engineering, Academic Press, New York City, 1973.
[23] H.-G. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y.-Q. Chen, A new collection of real world applications of
fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213–231.
[24] H. Vu and N. Van Hoa, On initial value problem of random fractional differential equation with impulses, Hacettepe
J. Math. Statist. 49 (2020), no. 1, 282–293.
[25] H. Vu, N.N. Phung, and N. Phuong, On fractional random differential equations with delay, Opuscula Math. 36
(2016), no. 4, 541–556.