Cubic-quartic functional equations in fuzzy normed spaces

Document Type : Research Paper

Authors

1 Department of Mathematics, Urmia University, Urmia, Iran.

2 Department of Mathematics, Hanyang University, Seoul 133-791, Korea.

Abstract

In this paper, we investigate the generalized Hyers--Ulam stability of the functional equation.

Keywords

  1. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. (1950), 64–66.
  2. T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. (2003), 687–705.
  3. T. Bag and S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst. 151 (2005), 513– 547.
  4. V. Balopoulos, A.G. Hatzimichailidis and Basil K. Papadopoulos, Distance and similarity measures for fuzzy operators, Inform. Sci. 177 (2007), 2336–2348.
  5. R. Biswas, Fuzzy inner product spaces and fuzzy norm functions, Inform. Sci. 53 (1991), 185– 190.
  6. S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), 429–436.
  7. M. Eshaghi Gordji, A. Ebadian and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abstract and Applied Analysis 2008 (2008), Article ID 801904, 17 pages.
  8. C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst. 48 (1992), 239–248.
  9. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431–434.
  10. D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224.
  11. K. Jun and H. Kim, The generalized Hyers–Ulam–Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867–878.
  12. A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst. 12 (1984), 143–154.
  13. I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326–334.
  14. S.V. Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets Syst. 63 (1994), 207–217.
  15. D. Mihet¸, The probabilistic stability for a functional equation in a single variable, Acta Math. Hungar. (in press).
  16. D. Mihet¸, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems (in press).
  17. D. Mihet¸ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567–572.
  18. M. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), 730–738.
  19. A.K. Mirmostafee and M.S. Moslehian, Fuzzy versions of Hyers–Ulam–Rassias theorem, Fuzzy Sets and Systems 159 (2008), 720–729.
  20. A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178 (2008), 3791–3798.
  21. W. Park and J. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Anal.– TMA 62 (2005), 643–654.
  22. J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126–130.
  23. J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445–446.
  24. J.M. Rassias, On a new approximation of approximately linear mappings by linear mappings, Discuss. Math. 7 (1985), 193–196.
  25. J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), 268–273.
  26. J.M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) (1999), 243–252.
  27. J.M. Rassias, Solution of the Ulam stability problem for quartic mappings, J. Indian Math. Soc. (N.S.) 67 (2000), 169–178.
  28. Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
  29. S. Shakeri, Intuitionistic fuzzy stability of Jensen type mapping. (English) J. Nonlinear Sci. Appl. 2, No. 2, (2009) 105–112.
  30. A. N. Sherstnev, The notion of random normed space, Sov. Math., Dokl. 4(1963), 388–391.
  31. B. Shieh, Infinite fuzzy relation equations with continuous t-norms, Inform. Sci. 178 (2008), 1961–1967. 3
  32. B. Schweizer, A. Sklar, Probabilistic metric spaces(new edition), Dover Books on Mathematics, Dover, New York, 2005.
  33. S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ, New York, 1960.
  34. J.Z. Xiao and X.-H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst. 133 (2003), 389–399.
  35. C. Wu and J. Fang, Fuzzy generalization of Klomogoroff ’s theorem, J. Harbin Inst. Technol. 1 (1984), 1–7.
Volume 1, Issue 1 - Serial Number 1
January 2010
Pages 12-21
  • Receive Date: 02 August 2009
  • Revise Date: 07 November 2009
  • Accept Date: 16 November 2009