C*-algebra valued partial metric space and some fixed point and coincidence point results

Document Type : Research Paper

Authors

Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), West Bengal, Kolkata 700126, India

Abstract

In this paper, we introduce the concept of C*-algebra valued partial metric as a generalization of partial metric and discuss the existence and uniqueness of fixed points for a self mapping defined on a C*-algebra valued partial metric space. We use these results to obtain some coincidence point and common fixed point results in this setting. Some examples are provided to justify our results.

Keywords

[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone
metric spaces, J. Math. Anal. Appl. 341 (2008), 416–420.
[2] I. Altun and O. Acar, Fixed point theorems for weak contractions in the sense of berinde on partial metric spaces,
Topol. Appl. 159 (2012), 2642–2648.
[3] I. Altun, F. Sola, and H. Simsek, Generalized contractions on partial metric spaces, Topol. Appl. 157 (2010),
2778–2785.
[4] H. Aydi, M. Abbas, and C. Vetro, Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric
spaces, Topo. Appl. 159 (2012), 3234–3242.
[5] M. Bukatin, R. Kopperman, S. Matthews, and H. Pajoohesh, Partial metric spaces, Am. Math. Mon. 116 (2009),
708–718.
[6] L. Ciri´c, B. Samet, H. Aydi, and C. Vetro, Common fixed points of generalized contractions on partial metric
spaces and an application, Appl. Math. Comput. 218 (2011), 2398–2406.
[7] R. Douglas, Banach algebra techniques in operator theory, Springer, Berlin, 1998.
[8] R. H. Haghi, Sh. Rezapour, and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Analysis: Theory, Methods Appl. 74 (2011), 1799–1803.[9] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures 7 (1999), 71–83.
[10] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4
(1996), 199–215.
[11] E. Karapinar and I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24
(2011), 1894–1899.
[12] Z. Ma and L. Jiang, C

-algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl.
2015 (2015), 2015:222.
[13] Z. Ma, L. Jiang, and H. Sun, C

-algebra-valued metric spaces and related fixed point theorems, Fixed Point
Theory Appl. 2014 (2014), 2014:206.
[14] S. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci. (1994), no. 728, 183–197.
[15] S. K. Mohanta, Common fixed points for mappings in G-cone metric spaces, J. Nonlinear Anal. Appl. 2012
(2012), doi:10.5899/ 2012/ jnaa-00120.
[16] , Common fixed point results in C ∗
-algebra valued b-metric spaces via digraphs, CUBO A Mathematical
Journal 20 (2018), 41–64.
[17] , Fixed points in C ∗
-algebra valued b-metric spaces endowed with a graph, Math. Slovaca 68 (2018),
639–654.
[18] G. Murphy, C

-algebra and operator theory, Academic Press, London, 1990.
[19] H. K. Nashine and Z. Kadelburg, Cyclic contractions and fixed point results via control functions on partial metric
spaces, International J. Anal. (2013), Article ID 726387.
[20] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl.
(2010), Article ID 493298.
[21] M. P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315
(2004), 135–149.
Volume 13, Issue 2
July 2022
Pages 1535-1551
  • Receive Date: 21 June 2021
  • Revise Date: 10 February 2022
  • Accept Date: 13 February 2022