[1] A. Bousselham, O. Bouattane, M. Youssfi and A. Raihani, Towards reinforced brain tumor segmentation on MRI
images based on temperature changes on pathologic area, Int. J. Biomed. Imag. 2019 (2019), Article ID 1758948,
1–18.
[2] BRATS database, (2015). http://braintumorsegmentation.org/
[3] H. Greenspan, A. Ruf and J. Goldberger, Constrained Gaussian mixture model framework for automatic segmentation of MR brain images, IEEE Trans. Med. Imag. 25 (2006), no. 9, 1233–1245.
[4] N. Gordillo, E. Montseny and P. Sobrevilla, State of the art survey on MRI brain tumor segmentation, Magnetic
Resonance Imag. 31 (2013), no. 8, 1426–1438.
[5] Z. Ji, Y. Xia, Q. Sun, Q. Chen and D. Feng, Adaptive scale fuzzy local Gaussian mixture model for brain mr image
segmentation, Neurocomput. 134 (2014), no. 12, 60—69.
[6] P. John, Brain tumor classification using wavelet and texture based neural network, Int. J. Sci. Engin. Res. 3
(2012), no. 10, 1–7.
[7] K. Kalti and M.A. Mahjoub, Image segmentation by Gaussian mixture models and modified FCM algorithm, Int.
Arab J. Inf. Technol. 11 (2014), no. 1, 11—18.
[8] P. Kumar and B. VijayKumar, Brain tumor MRI segmentation and classification using ensemble classifier, Int.
J. Recent Technol. Engin. 8 (2019), no. 1S4.
[9] G.C. Lin, W.J. Wang, C.C. Kang and C.M. Wang, Multispectral MR images segmentation based on fuzzy knowledge
and modified seeded region growing, Magnetic Resonance Imag. 30 (2012), no. 2, 230—246.
[10] I. Maiti and M. Chakraborty, A new method for brain tumor segmentation based on watershed and edge detection
algorithms in hsv colour model, IEEE Nat. Conf. Comput. Commun. Syst. (NCCCS), 2012, pp. 1—5.
[11] N. Mathur, S. Mathur and D. Mathur, A novel approach to improve Sobel edge detector, Procedia Comput. Sci.93 (2016), no. 16, 431—438.
[12] P.A. Mei, C. de Carvalho Carneiro, S.J. Fraser, L.L. Min and F. Reis, Analysis of neoplastic lesions in magnetic
resonance imaging using self-organizing maps, J. Neurol. Sci. 359 (2015), no. 1, 78-–83.
[13] K. Nimeesha and R.M. Gowda, Brain tumour segmentation using k-means and fuzzy c-means clustering algorithm,
Int. J. Comput. Sci. Inf. Technol. Res. Excell. 3 (2013), no. 2, 60—65.
[14] T.U. Paul and S.K. Bandhyopadhyay, Segmentation of brain tumor from brain mri images reintroducing k–means
with advanced dual localization method, Int. J. Engin. Res. Appl. 2 (2012), no. 3, 226-–231.
[15] K.A. Viji and J. JayaKumari, Modified texture based region growing segmentation of MR brain images, IEEE
Conf. Inf. Commun. Technol. (ICT), 2013, pp. 691—695.
[16] A. Vishnuvarthanan, M.P. Rajasekaran, V. Govindaraj, Y. Zhang and A. Thiyagarajan, Development of a combinational framework to concurrently perform tissue segmentation and tumor identification in T1-w, T2-w, Flair
and MPR type magnetic resonance brain images, Expert Syst. Appl. 95 (2018), no. 15, 280–311.
[17] A. Zotin, K. Simonov, M. Kurako, Y. Hamad and S. Kirillova, Edge detection in mri brain tumor images based
on fuzzy c-means clustering, Procedia Comput. Sci. 126 (2018), 1261—1270.