[1] A. Abakuks and A. Guiro, An optimal isolation policy for an epidemic, J. Appl. Prob. 10 (1973), no. 2, 247–262
.
[2] M. Barro, A. Guiro and D. Ouedraogo, Optimal control of a SIR epidemic model with general incidence function
and a time delays, CUBO Math. J. 20 (2018), no. 2, 53–66 .
[3] T. Bouremani, D. Benterki and Y. Slimani, Optimal Control of an Epidemic by Vaccination using Dynamic
Programming Approach, Int. J. Math. Oper. Res. In Press, DOI: 10.1504/IJMOR.2021.10042624.
[4] A. Cernea , S¸ and Miric˘a, Minimum principle for some classes of nonconvex differential inclusions, Anal. St.
Univ. Al.I. Cuza Ia¸si, Mat. 41 (1995), no. 2, 307–324 .
[5] L. Cesari, Optimization-Theory and applications, Springer-Verlag, 1983.
[6] M. Dashtbali, A. Malek and M. Mirzaie, Optimal control and differential game solutions for social distancing in
response to epidemics of infectious diseases on networks, Optim. Control Appl. Meth. 41 (2020,) 2149–2165 .
[7] H. Frankowska, The maximum principle for an optimal solution to a differential inclusion with end point constraints, SIAM J. Control Optim. 25 (1987), no. 1, 145–157 .
[8] Y-G. Hwang,H-D. Kwon and J. Lee, Feedback control problem of an SIR epidemic model based on the HamiltonJacobi-Bellman equation, Math. Biosci. Engin. 17 (2020), no. 3, 2284–2301 .
[9] V. Lupulescu and S¸. Miric˘a, Verification theorems for discontinuous value functions in optimal control, Math.
Reports 2 (2000), no. 52, 299–326 .
[10] S¸. Miric˘a, Constructive Dynamic programming in optimal control Autonomous Problems, Editura Academiei
Romˆane, Bucharest, 2004.
[11] S¸. Miric˘a, User’s Guide to Dynamic Programming for differential games and optimal control, Rev. Roumaine
Math. Pures Appl. 49 (2004), no. 5-6, 501–529 .
[12] S¸. Miric˘a and T. Bouremani, On the correct Solution of a trivial Optimal Control in Mathematical Economics,
Math. Reports 9 (2007), no. 59, 77–86 .
[13] S¸. Miric˘a and C. Necul˘aescu, On the solution of an optimal control problem in mathematical economics, Ann.
Bucharest Univ. Comput. Sci. 1 (1998), no. 1, 49–57 .
[14] N. Moussouni and M. Aliane, Optimal control of COVID-19, Int. J. Optim. Control: Theor. Appl. 11 (2021), no.
1, 114–122 .
[15] S. Moyo, L.G. Zelaya Cruz, R.L. de Carvalho and R.M. Faye, A model for pandemic control through isolation
policy, RAIRO-Oper. 54 (2020), no. 6, 1875–1890 .
[16] L.L. Obsu and S.F. Balcha, Optimal control strategies for the transmission risk of COVID-19, J. Bio. Dyn. 14
(2020), no. 1, 590–607 .
[17] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The Mathematical Theory of Optimal
Processes, Wiley, New York, 1962.
[18] C.J. Silva and D.F.M. Torres, Modeling and optimal control of HIV/AIDS prevention through prep, Discrete
Contin. Dyn. Syst. 11 (2018), no. 1, 119–141 .
[19] E. Tr´elat, Contrˆole optimal: th´eorie et applications, Version ´el´ectronique, 2020.