[1] M.A. Abbood, A.A. AL-Swidi and A.A. Omran, Study of some graphs types via. soft graph, ARPN J. Eng. Appl.
Sci. 14 (2019), no. Special Issue 8, 10375–10379.
[2] M.A. Abdlhusein and M.N. Al-Harere, Total pitchfork domination and its inverse in graphs, Discrete Math. Algor.
Appl. 13 (2021), no. 4, 2150038.
[3] Z.H. Abdulhasan and M.A. Abdlhusein, An inverse triple effect domination in graphs, Int. J. Nonlinear Anal.
Appl. 12 (2021), no. 2, 913–919.
[4] Z.H. Abdulhasan and M.A. Abdlhusein, Triple effect domination in graphs, AIP Conf. Proc. 2386 (2022), no. 1,
060013.
[5] K.S. Al’Dzhabri, A.A. Omran and M.N. Al-Harere, DG-domination topology in digraph, J. Prime Res. Math. 17
(2021), no. 2, 93–100.
[6] M.N. Al-Harere and M.A. Abdlhusein, Pitchfork domination in graphs, Discrete Math. Algor. Appl. 12 (2020),
no. 2, p. 2050025.
[7] M.N. Al-Harere and M.A. Abdlhusein, Some modified types of pitchfork domination and its inverse, Bol. Soc.
Paranaense Mat. 40 (2022), 1–9.
[8] M.N. Al-Harere and A.T. Breesam, Further results on bi-domination in graphs, AIP Conf. Proc. 2096 (2019),
no. 1, 020013.
[9] M.N. Al-Harere and P.A. Khuda Bakhash, Tadpole domination in duplicated graphs, Discrete Math. Algor. Appl.
13 (2021), no. 2, 2150003.
[10] M.N. Al-Harere, R.J. Mitlif and F.A. Sadiq, Variant domination types for a complete h-ary tree, Baghdad Sci. J.
18 (2021), no. 1.
[11] L.K. Alzaki, M.A. Abdlhusein and A.K. Yousif, Stability of (1,2)-total pitchfork domination, Int. J. Nonlinear
Anal. Appl. 12 (2021), no. 2, 265–274.
[12] M.N. Al-Harere, A.A. Omran and A.T. Breesam, Captive domination in graphs, Discrete Math. Algor. Appl. 12
(2020), no. 6, 2050076.
[13] C. Berge, The theory of graphs and its applications, Methuen, 1962.
[14] F. Harary, Graph Theory, Addison-Wesley Publishing Company, 1969.
[15] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, CRC Press, 1998.
[16] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: volume 2: advanced topics, Taylor &
Francis, 1998.
[17] T.A. Ibrahim and A.A. Omran, Restrained whole domination in graphs, J. Phys.: Conf. Ser. 1879 (2021), no. 3,
032029.
[18] A.A. Jabor and A.A. Omran, Topological domination in graph theory, AIP Conference Proc. 2334 (2021), 020010.
[19] S.S. Kahat and M.N. Al-Harere, Inverse equality co-neighborhood domination in graphs, J. Phys.: Conf. Ser. 1879
(2022), no. 3, 032036.
[20] S.S. Kahat, A.A. Omran and M.N. Al-Harere, Fuzzy equality co-neighborhood domination of graphs, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 537–545.
[21] S.S. Majeed, A.A.A. Omran and M.N. Yaqoob, Modern Roman domination of corona of cycle graph with some
certain graphs, Int. J. Math. Comput. Sci. 17 (2022), no. 1, 317–324.
[22] A.A. Omran, Domination and independence in cubic chessboard, Eng. Tech. J. 34 (2016), no. 1 Part (B) Scientific,
59–64.
[23] A.A. Omran, Domination and independence on square chessboard, Eng. Tech. J. 35 (2017), no. 1 Part B, 68–75.
[24] A.A. Omran, M.N. Al-Harere and S.S. Kahat, Equality co-neighborhood domination in graphs, Discrete Math
Algor. Appl. 14 (2022), no. 1, 2150098.[25] A.A. Omran and T.A. Ibrahim, Fuzzy co-even domination of strong fuzzy graphs, Int. J. Nonlinear Anal. Appl.
12 (2021), no. 1, 727–734.
[26] O. Ore, Theory of graphs, American Mathematical Soc. 1962.
[27] S. Salah, A.A. Omran and M.N. Al-Harere, Modern Roman domination on two operations in certain graphs, AIP
Conf. Proc. 2386 (2022), no. 1, 060014.
[28] S. Salah, A.A. Omran and M.N. Al-Harere, Modern Roman domination in fan graph and double fun graph, Eng.
Tech. J. 2022 (2022).
[29] S.H. Talib, A.A. Omran and Y. Rajihy, Inverse frame domination in graphs, 2020 IOP Conf. Ser.: Mater. Sci.
Eng. 928 (2020), 042024.
[30] H.J. Yousif and A.A. Omran, Inverse 2-anti fuzzy domination in anti fuzzy graphs, J. Phys.: Conf. Ser. 1818
(2021), no. 1, 012072.
[31] H.J. Yousif and A.A. Omran, Some results on the n-fuzzy domination in fuzzy graphs, J. Phys.: Conf. Ser. 1879
(2021), no. 3, 032009.
[32] H.J. Yousif and A.A. Omran, Closed fuzzy dominating set in fuzzy graphs, J. Phys.: Conf. Ser. 1879 (2021), no.
3, 032022.