[1] R.P. Agarwal, M.J. Luo and R.K. Raina, On Ostrowski type inequalities, Fasc. Math. 204 (2016), 5–27.
[2] F. Chen and Y. Feng, New inequalities of Hermite-Hadamard type for functions whose first derivatives absolute values are s−convex, Ital. J. Pure Appl. Math. 32 (2014), 213–222.
[3] S.S. Dragomir and C.E.M. Pearce, Selected topics on Hermite-Hadamard Inequalities and applications, RGMIA Monographs, Victoria University, 2000.
[4] S.S. Dragomir and S. Fitzpatrik, The Hadamard’s inequality for s−convex functions in the second sense, Demonstratio Math. 32 (1999), no. 4, 687–696.
[5] J. Hadamard, Etude sur les proprietes des fonctions enti`eres en particulier d’une fonction consid´er´ee par Riemann, J. Math. Pures Appl. 58 (1981), 171–215.
[6] C-Y. He, Y. Wang, B-Y. Xi and F. Qi, Hermite–Hadamard type inequalities for (α, m)-HA and strongly (α, m)-HA convex functions, J. Nonlinear Sci. Appl. 10 (2017), 205–214.
[7] Ch. Hermite, Sur deux limites d’une integrale define, Mathesis 3 (1883), 82.
[8] I. I¸scan, Ostrowski type inequalities for p−convex functions, New Trends Math. Sci. 4 (2016), 140–150.
[9] I. Iscan, Hermite-Hadamard type inequalities for harmonically convex fuctions, Hacet. J. Math. Stat. 43 (2014), 935–942.
[10] I. Iscan and S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput. 238 (2014), 237–244.
[11] A. Iqbal, M.A. Khan, S. Ullah and Y.-M. Chu, Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces 2020 (2020), 1–18.
[12] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. Comput. 147 (2004), no. 1, 137–146.
[13] M. Merkle and Z.D. Mitrovi´c, A tight Hermite–Hadamard inequality and a generic method for comparison between residuals of inequalities with convex functions, Period Math. Hung. (2021), https://doi.org/10.1007/s10998-021-00425-7
[14] M.V. Mihai, M.A. Noor, K.I. Noor and M.U. Awan, Some integral inequalities for harmonic h-convex functions involving hypergeometric functions, Appl. Math. Comput. 252 (2015), 257–262.
[15] D.S. Mitrinovic and B.I. Lackovic, Hermite and convexity, Aequationes Math. 28 (1985) 229-232.
[16] M.A. Noor, K.I. Noor, M.U. Awana and S. Costache, Some integral inequalities for harmonically h-convex functions, U.P.B Sci. Bull. Serai A. 77 (2015), no. 1, 5–16.
[17] M.A. Noor, K.I. Noor and S. Iftikhar, Hermite-Hadamard inequalities for strongly harmonic convex functions, J. Inequal. Spec. Funct. 7 (2016), 99–113.
[18] M.E. Ozdemir, E. Set and M. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inf. 20 (2011), no. 1, 62–73.
[19] J.E. Pecaric, F. Proschan and Y.L. Tong, Convex functions, partial orderings and statistical applications, Academic, Academic Press, Boston, 1992.
[20] R.K. Raina, On generalized wright’s hypergeometric functions and fractional calculus operators, East Asian Math. J. 21 (2005), 191–203.
[21] S. Sala¸s, Y. Erda¸s, T. Toplu and E. Set, On some generalized fractional integral inequalities for p−convex functions, Fractal Fract. 3 (2019), no. 29, 1–9.
[22] E. Set, S.S. Dragomir and A. Gozpinar, Some generalized Hermite-Hadamard type inequalities involving fractional integral operator for functions whose second derivatives in absolute values are s−convex, Acta Math. Univ. Comenianae 88 (2019), no. 1, 87–100.
[23] M. Vivas-Cortez and J.E. Hernandez Hernandez, Some Inequalities via Strongly p-Harmonic Log-Convex stochastic process, Appl. Math. Inf. Sci. 12 (2018), no. 1, 1–9.
[24] M. Vivas-Cortez and J.E. Hern´andez Hern´andez, Refinements for Hermite Hadamard type inequalities for operator h-convex Function, Appl. Math. Inf. Sci. 11(5) (2017) 1299-1307.
[25] M. Vivas-Cortez, J.E. Hernandez and S. Turhan, On exponentially (h1, h2)−convex functions and fractional integral inequalities related, Mathematica Moravica 24(2) (2020) 45–62.
[26] M. Vivas-Cortez, A. Kashuri, S.I. Butt, M. Tariq and J. Nasir, Exponential type p–convex function with some related inequalities and their applications, Appl. Math. Inf. Sci. 15 (2021), no. 3, 253–261.
[27] M. Vivas-Cortez, A. Kashuri, R. Liko and J.E. Hernandez, Some inequalities using generalized convex functions in quantum analysis, Symmetry 11 (2019), 1–14.
[28] M. Vivas-Cortez, A. Kashuri and J.E. Hernandez, Trapezium-Type inequalities for Raina’s fractional integrals operator using generalized convex functions, Symmetry 12 (2020), 1–17.
[29] M. Vivas-Cortez, A. Kashuri, R. Liko and J.E. Hernandez, Quantum Trapezium-Type inequalities using generalized ϕ-convex functions, Axioms 9 (2020), 1–14.
[30] M. Vivas-Cortez, R. Liko, A. Kashuri and J.E. Hernandez New quantum estimates of Trapezium-Type inequalities for generalized ϕ−convex functions, Math. 7 (2019), no. 11, 1047.
[31] W. Wang and J. Qi, Some new estimates of Hermite-Hadamard inequalities for harmonically convex functions with applications, Int. J. Anal. Appl. 13 (2017), no. 1, 15–21.
[32] T.-Y. Zhang and F. Qi, Integral inequalities of Hermite-Hadamard type for (m)-AH convex functions, Turk. J. Anal. Number Theory 3 (2014), no. 2, 60–64.