[1] A. Al-Said Ahmad, P. Brereton and P. Andras, A systematic mapping study of empirical studies on software cloud
testing methods, IEEE Int. Conf. Software Quality, Reliability and Security Companion (QRS-C), IEEE, 2017,
pp. 555–562.
[2] T. Atmaca, T. Begin, A. Brandwajn and H. Castel-Taleb, Performance evaluation of cloud computing centers
with general arrivals and service, IEEE Trans. Parallel Distrib. Syst. 27 (2016), 2341—2348.
[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski and M. Zaharia, A view of cloud computing,
Commun. ACM 53 (2010), no. 4, 50—58.
[4] M. Becker, S. Lehrig and S. Becker, Systematically deriving quality metrics for cloud computing systems, Proc.
6th ACM/SPEC Int. Conf. Perform. Engin. ICPE ‘15. ACM, New York, 2015, pp. 169–1-74.
[5] H. Ballani, P. Costa, T. Karagiannis and A. Rowstron, Towards predictable datacenter networks, Proceedings of
the ACM SIGCOMM 2011 Conf., 2011, pp. 242–253.
[6] A. Bauer, N. Herbst and S. Kounev, Design and evaluation of a proactive, application-aware auto-scaler, Proc.
8th ACM/SPEC Int. Conf. Perform. Engin., New York, 2017, pp. 425—428.[7] M. Beltran, Defining elasticity metric for cloud computing environments, Proc. 9th EAI Int. Conf. Perform. Eva.
Methodol. Tools, ICST, Brussels, 2016, pp. 172-–179.
[8] K. Blokland, J. Mengerink and M. Pol, Testing cloud services: how to test SaaS, PaaS & IaaS, Rocky Nook, Inc.,
2013.
[9] N. Bloom and N. Pierri, Cloud computing is helping smaller, newer firms compete, Harvard Bus. Rev. 94 (2018),
no. 4.
[10] G. Brataas, N. Herbst, S. Ivansek and J. Polutnik, Scalability analysis of cloud software services, Proc. IEEE Int.
Conf. Autonomic Comput. ICAC, 2017, pp. 285—292.
[11] R. Buyya, R. Ranjan and R.M. Calheiros, Intercloud: Utility-oriented federation of cloud computing environments for scaling of application services, International Conference on Algorithms and Architectures for Parallel
Processing. Springer, Berlin, Heidelberg, 2010.
[12] J. Dantas, R. Matos, J. Araujo and P. Maciel, Eucalyptus-based private clouds: availability modeling and comparison to the cost of a public cloud, Comput. 97 (2015), 1121-–1140.
[13] M. Gagnaire, F. Diaz, C. Coti, C. Cerin, K. Shiozaki, Y. Xu, P. Delort, J.P. Smets, J. Le Lous, S. Lubiarz and
P. Leclerc, Downtime statistics of current cloud solutions, International Working Group on Cloud Computing
Resiliency, Tech. Rep. 2012, pp. 176—189.
[14] J. Gao, X. Bai, W.T. Tsai and T. Uehara, SaaS testing on clouds - issues, challenges, and needs, Proc. IEEE 7th
Int. Symp. Service-Oriented Syst. Engin., SOSE, 2013, pp. 409-–415.
[15] J. Gao, P. Pattabhiraman, X. Bai and W.T. Tsai, SaaS performance and scalability evaluation in clouds, Proc.
6th IEEE Int. Symp. Service-Oriented Syst. Engin. SOSE 2011, IEEE, Irvine, 2011, pp. 61—71.
[16] N. Geetha and M.S. Anbarasi, Ontology in cloud computing: A survey, Int. J. Appl. Eng. Res. 10 (2015), no. 23,
43373—43377.
[17] K. Grigoriou, G. Retana and F.T. Rothaermel, IBM (in 2010) and the emerging cloud-computing industry,
Harvard Bus. Rev. 2012.
[18] N.R. Herbst, S.Kounev, A. Weber and H. Groenda, BUNGEE: an elasticity benchmark for self-adaptive IaaS cloud
environments, IEEE/ACM 10th Int. Symp. Software Engin. Adaptive and Self-Managing Syst., IEEE, 2015, pp.
46—56.
[19] N.R. Herbst, S. Kounev and R. Reussner, Elasticity in cloud computing: what it is, and what it is not, 10th Int.
Conf. Autonomic Comput. (ICAC 13), San Jose, 2013, pp. 23—27.
[20] Y. Hu, B. Deng, F. Peng, B. Hong, Y. Zhang and D. Wang, A survey on evaluating elasticity of cloud computing
platform, World Automation Congress (WAC). IEEE, 2016, pp. 1—4.
[21] K. Hwang, X. Bai, Y. Shi, M. Li, W.G. Chen and Y. Wu, Cloud performance modeling with benchmark evaluation
of elastic scaling strategies, IEEE Trans. Parallel Distrib. Syst. 27 (2015), no. 1, 130—143.
[22] K. Hwang, Y. Shi and X. Bai, Scale-out vs. scale-up techniques for cloud performance and productivity, IEEE 6th
Int. Conf. Cloud Comput. Technol. Sci., IEEE, 2014, pp. 763—768.
[23] A. Ilyushkin, A. Ali-Eldin, N. Herbst, A.V. Papadopoulos, B. Ghit, D. Epema and A. Iosup, An experimental
performance evaluation of autoscaling policies for complex workflows, Proc. 8th ACM/SPEC Int. Conf. Perform.
Engin., New York, 2017, pp. 75–86.
[24] B. Jennings and R. Stadler, Resource Management in Clouds: survey and research challenges, J. Network Syst.
Manag. 23 (2015), no. 3, 567–619.
[25] J. Kuhlenkamp, M. Klems and O. R¨oss, Benchmarking scalability and elasticity of distributed database systems,
Proc. VLDB Endow 7 (2014), 1219—1230.
[26] S. Lehrig, H. Eikerling and S. Becker, Scalability, elasticity, and efficiency in cloud computing: A systematic literature review of definitions and metrics, Proc. 11th Int. ACM SIGSOFT Conf. Quality of Software Architectures,
2015, pp. 83-–92.
[27] S. Lehrig, R. Sanders, G. Brataas, M. Cecowski, S. IvanĖsek and J. Polutnik, CloudStore—towards scalability,elasticity, and efficiency benchmarking and analysis in cloud computing, Future Gen. Comput. Syst. 78 (2018),
115—126.
[28] H.H. Liu, Software performance and scalability: A quantitative approach, Wiley, Hoboken, 2011.
[29] J. Mei, K. Li and K. Li, Customer-satisfaction-aware optimal multiserver configuration for profit maximization
in cloud computing, IEEE Trans. Sustain. Comput. 2 (2017), no. 1, 17–29.
[30] P. Mell and T. Grance, The NIST definition of cloud computing, NIST Special Publication, 2011.
[31] M.L. Shooman, Reliability of computer systems and networks, Wiley, Hoboken, 2002.
[32] V. Rajaraman, Cloud computing, Resonance 19 (2014), 242-–258.
[33] M. Woodside, Scalability metrics and analysis of Mobile agent systems, Workshop Infrast. Scalable Multi-Agent
Syst. Int. Conf. Autonomous Agents, Springer, Berlin, Heidelberg, 2001, pp. 234—245.