[1] M. Abboah-Offei, Y. Salifu, B. Adewale, J. Bayuo, R. Ofosu-Poku and E.B.A. Opare-Lokko, A rapid review of the use of face mask in preventing the spread of COVID-19, Int. J. Nurs. Stud. Adv. 3 (2021), 100013.
[2] I. Ahmed, M. Ahmad, J.J.P.C. Rodrigues, G. Jeon and S. Din, A deep learning-based social distance monitoring framework for COVID-19, Sustain. Cities Soc. 65 (2021).
[3] U.R. Alo, F.O. Nkwo, H.F. Nweke, I.I. Achi and H.A. Okemiri, Non-pharmaceutical interventions against COVID-19 pandemic: Review of contact tracing and social distancing technologies, protocols, apps, security and open research directions, Sensors 22 (2022), no. 1, 280.
[4] M.A. Ansari and D.K. Singh, Monitoring social distancing through human detection for preventing/reducing COVID spread, Int. J. Inf. Technol. 13 (2021), no. 3, 1255–1264.
[5] K. Bhambani, T. Jain and K.A. Sultanpure, Real-time face mask and social distancing violation detection system using YOLO, Proc. B-HTC 2020 - 1st IEEE Bangalore Humanit. Technol. Conf., 2020.
[6] A. Bochkovskiy, C.-Y. Wang and H.-Y.M. Liao, Yolov4: Optimal speed and accuracy of object detection, ArXivPrepr. arXiv2004.10934, (2020).
[7] N. Byrd and M. Bia lek, Your health vs. my liberty: Philosophical beliefs dominated reflection and identifiable victim effects when predicting public health recommendation compliance during the COVID-19 pandemic, Cognition 212 (2021), 104649.
[8] P. Dollar, C. Wojek, B. Schiele and P. Perona, Pedestrian detection: An evaluation of the state of the art, IEEE Trans. Pattern Anal. Mach. Intell. 34 (2011), no. 4, 743–761.
[9] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn and A. Zisserman, The Pascal visual object classes (voc) challenge, Int. J. Comput. Vis. 88 (2010), no. 2, 303–338.
[10] C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi and A.C. Berg, Dssd: Deconvolutional single shot detector, arXiv Prepr.arXiv1701.06659, (2017).
[11] R. Girshick, Fast R-CNN, in Proceedings of the IEEE international conference on computer vision, (2015), 1440–1448.
[12] R. Girshick, J. Donahue, T. Darrell and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, Proc. IEEE Conf. Comput. Vision Pattern Recog., 2014, pp. 580–587.
[13] S. Gupta, R. Kapil, G. Kanahasabai, S.S. Joshi and A.S. Joshi, SD-measure: A social distancing detector, Proc. 12th Int. Conf. Comput. Intell. Commun. Networks, CICN, 2020, pp. 306–311.
[14] M. Haris and A. Glowacz, Road object detection: a comparative study of deep learning-based algorithms, Electron. 10 (2021), no. 16, 1932.
[15] K. He, G. Gkioxari, P. Doll and R. Girshick, Mask R-CNN, Proc. IEEE Int. Conf. Comput. Vision, 2017, pp. 2961–2969.
[16] A.N. Ikwu, The impact of COVID-19 pandemic on Africa’s healthcare system and psychosocial life, Eur. J. Nat. Sci. Med. 4 (2021), no. 1, 39–50.
[17] M.M. Islam, F. Karray, R. Alhajj and J. Zeng, A review on deep learning techniques for the diagnosis of novel coronavirus (COVID-19), IEEE Access 9 (2021), 30551–30572.
[18] Y. Jamtsho, P. Riyamongkol and R. Waranusast, Real-time license plate detection for non-helmeted motorcyclist using YOLO, Ict Express 7 (2021), no. 1, 104–109.
[19] Y. Jing, Y. Ren, Y. Liu, D. Wang and L. Yu, Automatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi, Remote Sens. 14 (2022), no. 2, 382.
[20] R. Keniya and N. Mehendale, Real-time social distancing detector using socialdistancingNet-19 deep learning network, Available at SSRN 3669311, (2020).
[21] M.Z. Khan, M.U.G. Khan, T. Saba, I. Razzak, A. Rehman and S.A. Bahaj, Hot-spot zone detection to tackle Covid19 spread by fusing the traditional machine learning and deep learning approaches of computer vision, IEEEAccess 9 (2021), 100040–100049.
[22] G.S. Kumar and S.D. Shetty, Application development for mask detection and social distancing violation detection using convolutional neural networks, ICEIS 2021–23rd Int. Conf. Enterprise Info. Syst. 1 (2021), 760–767.
[23] A. Kuznetsova, H. Rom, N. Alldrin, J. Uijlings, I. Krasin, J. Pont-Tuset, S. Kamali, S. Popov, M. Malloci, A. Kolesnikov and T. Duerig, The open images dataset v4, Int. J. Comput. Vision 128 (2020), no. 7, 1956–1981.
[24] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll´ar and C.L. Zitnick, Microsoft coco: Common objects in context, Eur. Conf. Comput. Vision, 2014, pp. 740–755.
[25] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.Y. Fu and A.C. Berg, Ssd: Single shot multibox detector, Eur. Conf. Comput. Vision, 2016, pp. 21–37.
[26] R. Magoo, H. Singh, N. Jindal, N. Hooda and P.S. Rana, Deep learning-based bird eye view social distancing monitoring using surveillance video for curbing the COVID-19 spread, Neural Comput. Appl. 33 (2021), no. 22, 15807–15814.
[27] E. Mbunge, Integrating emerging technologies into COVID-19 contact tracing: Opportunities, challenges and pitfalls, Diabetes Metab. Syndr. Clin. Res. Rev. 14 (2020), no. 6, 1631–1636.
[28] E. Mbunge, Effects of COVID-19 in South African health system and society: An explanatory study, Diabetes Metab. Syndr. Clin. Res. Rev. 14 (2020), no. 6, 1809–1814.
[29] E. Mbunge, B. Akinnuwesi, S.G. Fashoto, A.S. Metfula and P. Mashwama, A critical review of emerging technologies for tackling COVID-19 pandemic, Hum. Behav. Emerg. Technol. 3 (2021), no. 1, 25–39.
[30] E. Mbunge, S.G. Fashoto, B. Akinnuwesi, A. Metfula, S. Simelane and N. Ndumiso, Ethics for integrating emerging technologies to contain COVID-19 in Zimbabwe, Hum. Behav. Emerg. Technol. 3 (2021), no. 5, 876–890.
[31] S. Meivel, N. Sindhwani, R. Anand, D. Pandey, A.A. Alnuaim, A.S. Altheneyan, M.Y. Jabarulla and M.E. Lelisho, Mask detection and social distance identification using internet of things and faster R-CNN algorithm, Comput. Intell. Neurosci. 2022 (2022).
[32] K. Ng, B.H. Poon, T.H. Kiat Puar, J.L. Shan Quah, W.J. Loh, Y.J. Wong, T.Y. Tan and J. Raghuram, COVID-19 and the risk to health care workers: A case report, Ann. Int. Med. 172 (2020), no. 11, 766–767.
[33] D. Pandit, S. Chougule, H. Fatepurwala, A. Kulkarni, N. Kakade and A. Sundge, Generalized method to validate social distancing using median angle proximity methodology, Proc. 3rd Int. Conf. Intell. Sustain. Syst. ICISS, 2020, pp. 279–284.
[34] N.S. Punn, S.K. Sonbhadra, S. Agarwal and G. Rai, Monitoring COVID-19 social distancing with person detection and tracking via fine-tuned YOLO v3 and Deepsort techniques, arXiv preprint arXiv:2005.01385, (2020) 1–10.
[35] J. Qin and N. Xu, Research and implementation of social distancing monitoring technology based on SSD, Procedia Comput. Sci. 183 (2021), 768–775.
[36] S. Rab, M. Javaid, A. Haleem and R. Vaishya, Face masks are new normal after COVID-19 pandemic, Diabetes Metab. Syndr. Clin. Res. Rev. 14 (2020), no. 6, 1617–1619.
[37] A. Rahim, A. Maqbool and T. Rana, Monitoring social distancing under various low light conditions with deep learning and a single motionless time of flight camera, PLoS One 16 (2021), no. 2, 1–19.
[38] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, You only look once: Unified, real-time object detection, Proc. IEEE Conf. Comput. Vision Pattern Recogn., 2016, pp. 779–788.
[39] J. Redmon and A. Farhadi, YOLO9000: Better, faster, stronger, Proc. IEEE Conf. Comput. Vision Pattern Recogn., 2017, pp. 7263–7271.
[40] J. Redmon and A. Farhadi, Yolov3: An incremental improvement, arXiv Prepr. arXiv1804.02767, (2018).
[41] H.S. Rekha, H.S. Behera, J. Nayak and B. Naik, Deep learning for COVID-19 prognosis: A systematic review, Intell. Comput. Control Commun. (2021), 667–687.
[42] S. Ren, K. He, R. Girshick and J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, Adv. Neural Inf. Process. Syst. 28 (2015).
[43] B. Roy, S. Nandy, D. Ghosh, D. Dutta, P. Biswas and T. Das, MOXA: A deep learning based unmanned approach for real-time monitoring of people wearing medical masks, Trans. Indian Natl. Acad. Eng. 5 (2020), no. 3, 509–518.
[44] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein and A.C. Berg, Imagenet large scale visual recognition challenge, Int. J. Comput. Vis. 115 (2015), no. 3, 211–252.
[45] S. Saponara, A. Elhanashi and A. Gagliardi, Implementing a real-time, AI-based, people detection and social distancing measuring system for Covid-1 9, J. Real-Time Image Process. 18 (2021), no. 6, 1937–1947.
[46] Z. Shao, G. Cheng, J. Ma, Z. Wang, J. Wang and D. Li, Real-time and accurate UAV pedestrian detection for social distancing monitoring in COVID-19 pandemic, IEEE Trans. Multimed. 24 (2021), 1–16.
[47] S.W. Sim, K.S.P. Moey and N.C. Tan, The use of facemasks to prevent respiratory infection: A literature review in the context of the health belief model, Singapore Med. J. 55 (2014), no. 3, 160.
[48] M. Sriharsha, S. Jindam, A. Gandla and L.S. Allani, Social distancing detector using deep learning, Int. J. Recent Technol. Eng. 10 (2022), no. 5, 146–149.
[49] S. Srinivasan, R. Rujula Singh, R.R. Biradar and S.A. Revathi, COVID-19 monitoring system using social distancing and face mask detection on surveillance video datasets, Int. Conf. Emerg. Smart Comput. Informatics, ESCI, 2021, pp. 449–455.
[50] Y. Su, D. Li and X. Chen, Lung nodule detection based on faster R-CNN framework, Comput. Methods Programs Biomed. 200 (2021), 105866.
[51] R. Vaishya, M. Javaid, I.H. Khan and A. Haleem, Artificial intelligence (AI) applications for COVID-19 pandemic, Diabetes Metab. Syndr. Clin. Res. Rev. 14 (2020), no. 4, 337–339.
[52] D. Yang, E. Yurtsever, V. Renganathan, K.A. Redmill and U. Ozguner, A vision-based social distancing and critical density detection system for COVID-19, Sensors (Basel) 21 (2021), no. 13.
[53] C. Yu, Z. Hu, R. Li, X. Xia, Y. Zhao, X. Fan and Y. Bai, Segmentation and density statistics of mariculture cages from remote sensing images using mask R-CNN, Inf. Process. Agric. In Press, (2021).
[54] Z. Zhang, Y. Li, W. Wu, H. Chen, L. Cheng and S. Wang, Tumor detection using deep learning method in automated breast ultrasound, Biomed. Signal Process. Control 68 (2021), 102677.
[55] P. Zhu, L. Wen, X. Bian, H. Ling and Q. Hu, Vision meets drones: A challenge, arXiv Prepr. arXiv1804.07437, (2018).