[1] N. Ali and S. Chakravarty, Consequence of prey refuge in a tri-trophic prey-dependent food chain model with
intra-specific competition, J. Appl. Non. Dyn. 3 (2014), 1–6.[2] R. Arditi and L. Ginzburg, Coupling in predator-prey dynamics: ratiodependence, J. Theo. Bio. 139 (1989),
311–326.
[3] A.D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific, 1998.
[4] J.R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Ani.
Ecol. 44 (1975), 331–340.
[5] G. Birkhoff and G.C. Rota, Ordinary differential equations, Ginn, Boston, 1989.
[6] C. Castellano, S. Fortunato and V. Loreto, Statistical physics of social dynamics, Rev. Mod. Phys. 81 (2009),
591.
[7] P. Cong, M. Fan and X. and Zou, Dynamics of a three-species food chain model with fear effect, Commn. Non.
Sc. Num. Sim. 99 (2021), 105809.
[8] S. Creel and N.M. Creel, Communal hunting and pack size in African wild dogs, Lycaon pictus, Anim. Behav. 50
(1995), 1325–1339.
[9] A. Dejean, C. Leroy, B. Corbara, O. Roux, P. Cereghino, J. Orivel and R. Boulay, Arboreal ants use the “velcro
principle” to capture very large prey, Plos. One 5 (2010), e11331.
[10] J.P. Fran¸coise and J. Llibre, Analytical study of a triple Hopf bifurcation in a tritrophic food chain model, Appl.
Math. Comp. 217 (2011), 7146–7154.
[11] S. Gakkhar and R. Naji, Seasonally perturbed prey-predator system with predator-dependent functional response,
Chaos. Sol. Frac. 18 (2003), 1075–1083.
[12] M. Haque, Ratio-dependent predator-prey models of interacting populations, B. Math. Bio. 71 (2009), 430–452.
[13] M. Haque, N. Ali and S. Chakravarty, Study of a tri-trophic prey-dependent food chain model of interacting
populations, Math. Bio. 246 (2013), 55–71.
[14] A. Hastings and T. Powell, Chaos in a three-species food chain, Ecol. 72 (1991), 896–903.
[15] C.S. Holling, The components of predation as revealed by a study of small-mammal predation of the European
pine sawfly, Canad. Entomologist. 91 (1959), 293–329.
[16] E. Holmes, M. Lewis, J. Banks and R. Veit, Partial differential equations in ecology: Spatial interactions and
population dynamics, Ecol. 75 (1994), 17–29.
[17] A. Klebanoff and A. Hastings, Chaos in three species food chains, J. Math. Bio. 32 (1994) 427–451.
[18] M. Kot, Elements of mathematical ecology, Cambridge University Press, 2001.
[19] V. Kumar and N. Kumari, Controlling chaos in three species food chain model with fear effect, AIMS Math. 5
(2020), 828–842.
[20] S. Lima and L.M. Dill, Behavioral decisions made under the risk of predation: A review and prospectus, Canad.
J. Zoo. 68 (1990), 619–640.
[21] A.J. Lotka, Elements of mathematical biology, Dover Publications, 2011.
[22] S. Lv and M. Zhao, The dynamic complexity of a three species food chain model, Chaos Solitons Fractals 37 (2008)
1469–1480.
[23] R.M. May, Stability and complexity in model ecosystems, Princeton University Press, 2001.
[24] X. Meng, R. Liu and T. Zhang, Adaptive dynamics for a non-autonomous Lotka-Volterra model with size-selective
disturbance, Non. Anal.: Real. Wrold. Appl. 16 (2014), 202–213.
[25] H. Molla, M.S. Rahman and S. Sarwardi, Dynamics of a predator-prey model with Holling type II functional
response incorporating a prey refuge depending on both the species, Int. J. Nonl. Sc. Num. Simul. 20 (2019), no.
1, 89–104.
[26] N. Mukherjee, S. Ghorai and M. Banerjee, Detection of turing patterns in a three species food chain model via
amplitude equation, Commn. Non. Sc. Num. Sim. 69 (2019), 219–236.[27] J.D. Murray, Mathematical biology II: Spatial models and biomedical applications, Springer-Verlag, New York,
2001.
[28] S. Pal, N. Pal, S. Samanta and J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model,
Ecol. Comp. 39 (2019), 100770.
[29] P. Pandey, N. Pal, S. Samanta J. and Chattopadhyay, Stability and bifurcation analysis of a three-species food
chain model with fear, Int. J. Bif. Chaos. 28 (2018), 1850009.
[30] E.C. Pielou, An introduction to mathematical ecology, John Wiley & Sons, 1969.
[31] M.L. Rosenzweig, and R.H. MacArthur, Graphical representation and stability conditions of predator-prey interactions, Amer. Nat. 97 (1963), 209–223.
[32] K. Sarkar and S. Khajanchi, Impact of fear effect on the growth of prey in a predator-prey interaction model, Ecol.
Comp. 42 (2020), 100826.
[33] S.K. Sasmal, Population dynamics with multiple Allee effects induced by fear factors-A mathematical study on
prey-predator interactions, Appl. Math. Modl. 64 (2018), 1–14.
[34] G. Seo and D.L. DeAngelis A predator-prey model with a Holling type I functional response including a predator
mutual interference, J. Nonlinear Sci. 21 (2011), 811–833.
[35] N. Shigesada, K. Kawasaki and E. Teramoto, Spatial segregation of interacting species, J. Theo. Biol. 79 (1979),
83–99.
[36] N. Sk, P.K. Tiwari, Y. Kang and S. Pal, A nonautonomous model for the interactive effects of fear, refuge and
additional food in a prey-predator system, J. Bio. Syst. 29 (2021), 107–145.
[37] N. Sk, P.K. Tiwari and S. Pal, A delay nonautonomous model for the impacts of fear and refuge in a three species
food chain model with hunting cooperation, Math. Comp. Simul. 192 (2022), 136–166.
[38] A. Szolnoki, M. Mobilia, L.-L. Jiang, B. Szczesny, A.M. Rucklidge and M. Perc, Cyclic dominance in evolutionary
games: A review, J. Royl. Soc. Intrf. 11 (2014), 20140735.
[39] R.J. Taylor, Predation, Chapman & Hall, 1984.
[40] X. Wang, L. Zanette and X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol. 73 (2016),
1179–1204.
[41] D. Xiao and S. Ruan, Global analysis in a predator-prey system with nonmonotonic functional response, SIAM J.
Appl. Math. 61 (2001), 1445–1472.