[1] A.A.N. Abdou and M.A. Khamsi, Fixed point results of pointwise contractions in modular metric spaces, Fixed
Point Theory Appl. 2013 (2013), no. 1, 1–11.
[2] A.A.N. Abdou and M.A. Khamsi, On the fixed points of nonexpansive mappings in modular metric spaces, Fixed
Point Theory Appl. 2013 (2013), no. 1, 1–13.
[3] M.R. Alfuraidan, The contraction principle for multivalued mappings on a modular metric space with a graph,
Canad. Math. Bull. 59 (2016), no. 1, 3–12.
[4] H. Aydi, S. Chauhan and S. Radenovic, Fixed points of weakly compatible mappings in G-metric spaces satisfying
common limit range property, Facta Univ. Ser. Math. Inf. 28 (2013), no. 2, 197–210.
[5] E. Aydin and S. Kutukcu, Modular A-metric spaces, J. Sci. Arts 17 (2017), no. 3, 423–432.
[6] P. Chaipunya, C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed-point theorems for multivalued mappings
in modular metric spaces, Abstr. Appl. Anal. 2012 (2012).[7] S. Chauhan, M.A. Khan and W. Sintunavarat, Common fixed point theorems in fuzzy metric spaces satisfyingcontractive condition with common limit range property, Abstr. Appl. Anal. 2013 (2013), 735217.
[8] S. Chauhan, W. Sintunavarat and P. Kumam, Common fixed point theorems for weakly compatible mappings in
fuzzy metric spaces using (JCLR) property, Appl. Math. 3 (2012), no. 9, 22996.
[9] V.V. Chistyakov, Metric modulars and their application, Doklady Math. 73 (2006), no. 1, 32–35.
[10] V.V. Chistyakov, Modular metric spaces generated by F -modulars, Folia Math. 14 (2008), 3–25.
[11] V.V. Chistyakov, Modular metric spaces, I: basic concepts, Nonlinear Anal. Theory Meth. Appl. 72 (2010), no.
1, 1–14.
[12] V.V. Chistyakov, Modular metric spaces, II: application to superposition operators, Nonlinear Anal. Theory Meth.
Appl. 72 (2010), no. 1, 15–30.
[13] Y.J.E. Cho, R. Saadati and G. Sadeghi, Quasi-contractive mappings in modular metric spaces, J. Appl. Math.
2012 (2012).
[14] G. Jungck, Commuting maps and fixed points, Amer. Math. Month. 83 (1976), 261–263.
[15] G. Jungck and B.E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl.
Math. 29 (1998), 227–238.
[16] H. Hosseinzadeh and V. Parvaneh, Meir-Keeler type contractive mappings in modular and partial modular metric
spaces, Asian-Eur. J. Math. 13 (2020), no. 5, 2050087.
[17] M. Imdad, S. Chauhan, A.H. Soliman and M.A. Ahmed, Hybrid fixed point theorems in symmetric spaces via
common limit range property, Demonst. Math. 47 (2014), no. 4, 949–962.
[18] M. Imdad, B. Pant and S. Chauhan, Fixed point theorems in Menger spaces using the (CLRST ) property and
applications, J. Nonlinear Anal. Optim. Theory Appl. 3 (2012), no. 2, 225–237.
[19] M. Jain, K. Tas, S. Kumar and N. Gupta, Coupled fixed point theorems for a pair of weakly compatible maps
along with CLRg property in fuzzy metric spaces, J. Appl. Math. 2012 (2012), 961210.
[20] A. Mutlu, K. Ozkan and U. G¨urdal, ¨ Coupled fixed point theorem in partially ordered modular metric spaces and
its an application, J. Comput. Anal. Appl. 25 (2018), no. 2, 1–10.
[21] V. Parvaneh, N. Hussain, M. Khorshidi, N. Mlaiki and H. Aydi, Fixed point results for generalized F-contractions
in modular b-metric spaces with applications, Math. 7 (2019), no. 10, 887.
[22] A.F. Rold´an-L´opez-de-Hierro and W. Sintunavarat, Common fixed point theorems in fuzzy metric spaces using
the CLRg property, Fuzzy Sets Syst. 282 (2016), 131–142.
[23] W. Sintunavarat and P. Kumam, Common fixed point theorems for a pair of weakly compatible mappings in fuzzy
metric spaces, J. Appl. Math. 2011 (2011), 1–14.
[24] W. Sintunavarat and P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and
applications, J. Inequal. Appl. 2012 (2012), no. 1, 1–12.
[25] P. Sumalai, P. Kumam, Y.J. Cho and A. Padcharoen, The (CLRg)-property for coincidence point theorems and
Fredholm integral equations in modular metric spaces, Eur. J. Pure Appl. Math. 10 (2017), no. 2, 238–254.