[1] R.P. Agarwal, D. O’Regan, and D.R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Topol. Fixed Point Theory Appl., Springer, New York, NY, USA, 2009.
[2] H. Attouch and J. Peypouquent, The rate of convergence of Nesterov’s accelarated forward - backward method
is actually faster than 1
k2 ., SIAMJ. Optim. 26 (2016), 1824–1834.[3] A. Beck and M. Teboulle, A fast iterative shrinkage thresholding algorithm for linear inverse problem, SIAMJ.
Imaging Sci. 2 (2009), 183–202.
[4] R. I. Bot, E. R. Csetnek and C. Hendrich, Inertial Douglas-Rachford splitting for monotone inclusion problems,
Appl. Math. Comput. 256 (2015), 472–487.
[5] H.H. Bauschke and P.L Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer,
Berlin, 2011.
[6] F.E. Browder and W.V. Petryshyn, construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math.
Anal. Appl. 20 (1967), 197–228.
[7] S. Banach, Th¶eorie des operations lineires, Warsaw, 1932.
[8] S. Banach, Sur les op´erations dans les ensembles abstraits et leur application aux ´equations int´egrales, Fund.
Math. 3 (1922), 133–181.
[9] R. Cacciopoli, Un teorem generale sull’esistenza di elementi uniti in una trans-formazione funzionale, Rend.
Accad. Naz. Lincei 13 (1931), 498–502.
[10] L. C. Ceng, A. Petrusel, C.F. Wen, J.C. Yao, Inertial-like subgradient extragradient methods for variational
inequalities and fixed points of asymptotically nonexpansive and strictly pseudocontractive mappings, Math. 7
(2019) no. 9, Article Number: 860.
[11] L.C. Ceng, A. Petrusel, X. Qin, J.C. Yao, Two inertial subgradient extragradient algorithms for variational
inequalities with fixed-point constraints, Optim. 70 (2021), no. 5-6, 1337–1358.
[12] P. Chen, J. Huang and X. Zhang, A primal-dual fixed point algorithm for convex separable minimization with
application to image restoration, Inverse Probl. 29 (2013).
[13] W. L. Cruiz, A Residual Algorithm for Finding a Fixed Point of a Nonexpansive Mapping, Fixed Point Theory
and Appl., (2018), Doi: 10.1007/2018/05964.
[14] P. Cholamjiak and S. Suantai, Weak convergence theorems for a countable family of strict pseudocontractions
in Banach spaces, Fixed Point Theory Appl. 2010 (2010), 1–16
[15] P. Cholamjiak and S. Suantai, Strong convergence theorems for a countable family of strict pseudocontractions
in q−uniformly Banach spaces, Comput. Math. Appl. 62 (2011), no. 2, 787–796.
[16] P. Cholamjiak and S. Suantai, Weak and strong convergence theorems for a countable family of strict pseudo-contractions in Banach spaces, Optim. 62 (2013), no. 2, 255–270.
[17] C.E. Chidume and S.A. Mutangadura, An example of the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc. 129 (2001), 2359–2363.
[18] I. Cioranescu, Geometry of Banach spaces,duality mappings and nonlinear problems, Kluwer, Dordrecht, 1990.
[19] C.E. Chidume, Geometric properties of Banach spaces and nonlinear iterations, Springer, London, UK, 2009.
[20] Q.L. Dong, H.B. Yuan, C.Y. Je and Th.M. Rassias, Modified inertial Mann algorithm and inertial CQ-algorithm
for nonexpansive mappings, Optim. Lett. 12 (2016), doi.org/10.1007/s11590-016-1102-9
[21] Q.L. Dong and H.B. Yuan, Accelerated Mann and CQ algorithms for finding a fixed point of a nonexpansive
mapping, Fixed Point Theory Appl. 125 (2015), Doi: 10.1186/s13663-015-0374-6
[22] Q.L. Dong, C.Y. Je and Th.M. Rassias, General inertial Mann algorithms and their convergence analysis for
nonexpansive mappings, Appl. Nonlinear Anal. 134 (2018), Doi:10.1007/978-3-319-89815-5-7.
[23] B. Halpern, Fixed points of nonexpansive maps, Bull. Am. Math. Soc., 73 (1967), 957-961.
[24] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer Math. Soc. 44 (1974), 147–150.
[25] M.H. Harbau, Inertial hybrid self-adaptive subgradient extragradient method for fixed point of quasi-ϕnonexpansive multivalued mappings and equilibrium problem, Adv. Theory Nonlinear Anal. Appl., 5 (2021), no.
4, 507–522.
[26] T. Kato, Nonlinear semigroups and Evolution equations, J. Mtah. Soc. Japan 19, (1967), 508–520.
[27] B. Leemon, Residual Algorithms: Reinforcement Learning with Function Approximatin, U.S. Air Force technical
Report, Department of Computer Science, U.S. Air Force Academy, CO 80840-6234, (1995).
[28] H. Liduka, Iterative algorithm for triple-hierarchical constrained nonconvex optimization problem and its application to network bandwidth allocation, SIAM J. Optim. 22 (2012), 862–878.
[29] H. Liduka, Fixed point optimization algorithms for distributed optimization in networked systems, SIAM J. Optim.
23 (2013), 1–26.
[30] D.A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging
Vis. 51 (2015), 311–325.
[31] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.[32] P.E. Mange, Convergence theorems for inertial KM-type algorithms, J. Comput. Appl. Math. 219 (2008), 223–
236.
[33] C.A. Micchelli, L. Shen and Y. Xu, Proximity algorithms for image models; denoising, Inverse Probl. 27 (2011),
no. 4.
[34] J. Olaleru and G. Okeke, Convergence theorems on asymptotically demicontractive and hemicontractive mappings
in the intermediate sense, Fixed Point Theory Appl. 2013 (2013), 352.
[35] Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer.
Math. Soc. 73 (1967), 591–597.
[36] B.T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math.
Phys. 4 (1964), no. 5, 1–17
[37] E. Picard, M´emoire sur la th´eorie des ´equations aux d´eriv´ees partielles et la m´ethode des approximations successives, J. Math. Pures Appl. 6 (1890), 145–210.
[38] K. K. Tan and H. K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration
process, J. Math. Anal. Appl. 178 (1993), 301–308.
[39] Y. Yao, G. Marino and L. Muglia, A modified Korpelevich’s method convergent to the minimum-norm solution
of a variational inequality, Optim. 63 (2012), no. 4, 1–11.
[40] S. Yekini, An iterative approximation of fixed points of strictly pseudocontracvtive mappings in Banach spaces,
MATEMATHYKN BECHNK 2 (2015), 79–91.
[41] H. Zhou, Convergence theorems of common fixed points for a finite family of Lipschitz pseudocontractions in
Banach spaces, Nonlinear Anal. 68 (2008), 2977–2983.