Perturbations of Jordan higher derivations in Banach ternary algebras : An alternative fixed point approach

Document Type : Research Paper

Authors

Department of Mathematics, Shahid Beheshti University, P. O. Box 731, Tehran, Iran

Abstract

Using fixed point methods, we investigate approximately higher ternary Jordan derivations in Banach ternaty algebras via the Cauchy functional equation
$$f(\lambda_{1}x+\lambda_{2}y+\lambda_3z)=\lambda_1f(x)+\lambda_2f(y)+\lambda_3f(z).$$

Keywords

  1. V. Abramov, R. Kerner, and B. Le Roy, Hypersymmetry: A Z3-graded generalization of supersymmetry, J. Math. Phys. 38 (1997), 1650-1669.
  2. R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), 589-597.
  3. R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), 167-173.
  4. M. Bavand Savadkouhi, M. Eshaghi Gordji, J. M. Rassias, N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys. 50, 4, Art. No. 042303 (2009), 9 pages, DOI: 10.1063/1.3093269.
  5. D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397.
  6. A. Cayley, Cambridge Math. Journ. 4 (1845), p. 1.
  7. L. Cˇadariu, V. Radu, Fixed points and the stability of quadratic functional equations, Analele Universitatii de Vest din Timisoara. 41 (2003), 25-48.
  8. L. Cˇadariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4 (2003), Art. ID 4.
  9. L. Cˇadariu, V. Radu, The fixed points method for the stability of some functional equations, Carpathian Journal of Mathematics 23 (2007),63-72.
  10. L. Cˇadariu and V. Radu, on the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische berichte 346 (2004), 43-52.
  11. M. Eshaghi Gordji, H. Khodaei, R. Saadati and Gh. Sadeghi, Approximation of additive mappings with m-variables in random normed spaces via fixed point method, (To appear).
  12. Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
  13. P. Gˇavrutˇa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
  14. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad 27 (1941), 222-224.
  15. G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theorey 72 (1993), 131-137.
  16. B. E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. 37 (1988), no. 2, 294-316.
  17. Y.-S. Jung, On the generalized Hyers-Ulam stability of module derivations, J. Math. Anal. Appl. 339 (2008), 108-114.
  18. R. V. Kadison and G. Pedersen, Means and convex conbinations of unitary operators, Math. Scand. 57 (1985), 249-266.
  19. M. Kapranov, I. M. Gelfand, and A. Zelevinskii, Discriminants, Resultants, and Multidimensional Determinants, Birkhauser, Boston, 1994.
  20. R. Kerner, Ternary algebraic structures and their applications in physics, preprint.
  21. T. Miura, G. Hirasawa, and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006), 522-530.
  22. M. S. Moslehian, Almost derivations on C-ternary rings, Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 135-142.
  23. J. Nambu, Physical Review D7 (1973), p. 2405.
  24. C. Park, Isomorphisms between C ∗ -ternary algebras, J. Math. Anal. Appl. 327 (2007), 101-115.
  25. C. Park and Th. M. Rassias, d-Isometric Linear Mappings in Linear d-normed Banach Modules, J. Korean Math. Soc. 45 (2008), no. 1, 249-271.
  26. C. Park and J. S. An, Isomorphisms in quasi-Banach algebras, Bull. Korean Math. Soc. 45 (2008), no. 1, 111-118.
  27. K.-H. Park and Y.-S. Jung, Perturbations of Higher ternary derivations in Banach ternary algebras, Commun. Korean Math. Soc. 23 (2008), no. 3, 387-399.
  28. K.-H. Park and Y.-S. Jung, The stability of a mixed type functional inequality with the fixed point alternative, Commun. Korean Math. Soc. 19 (2004), no. 2, 253266.
  29. V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
  30. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
  31. I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).
  32. S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ./Reidel, Warszawa/Dordrecht, 1984.
  33. S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.
  34. GL. Vainerman and R. Kerner, On special classes of n-algebras, J. Math. Phys. 37 (1996), 2553-2565.
Volume 1, Issue 1 - Serial Number 1
January 2010
Pages 42-53
  • Receive Date: 05 March 2009
  • Revise Date: 14 August 2009
  • Accept Date: 18 August 2009