[1] N. Acharya and S. Singh, An IWD-based feature selection method for an intrusion detection system, Soft Comput. 22 (2018), 4407–4416.
[2] S. Alqahtani and R. Gamble, DDoS attacks in service clouds, 48th Hawaii Int. Conf. Syst. Sci., 2015, pp. 5331–5340.
[3] A. Alzaqebah, I. Aljarah, O. Al-Kadi and R. Damaevicius, A modified grey wolf optimization algorithm for an intrusion detection system, Math. 10 (2022), no. 6, 999.
[4] J. Arora, Introduction to Optimum Design, McGraw-Hill, 1989.
[5] N.A. Azeez, B.B. Salaudeen, S. Misra, R. Damaevicius and R. Maskeliunas, Identifying phishing attacks in communication networks using URL consistency features, Int. J. Electron. Secur. Digit. Forensics 12 (2020), 200–213.
[6] M. Basha, N. Vivekananda and H. Bindu, Evaluating the effect of attack on MANET routing protocols using intrusion detection system, IJECT 5 (2014), 64–71.
[7] H. Bersini and F. J. Varela, Hints for adaptive problem solving gleaned from immune networks, Parellel Problem Solving from Nature, PPSW1, Dortmund, FRG, 1990.
[8] C. Blum and A. Roli, Metaheuristics in combinatorial optimization: overview and conceptual comparison, ACM Comput. Surv. 35 (2003), 268–308.
[9] M. Chahal and S. Harit, Optimal path for data dissemination in Vehicular Ad HocNetworks using meta-heuristic, Comput. Electric. Engin. 76 (2019), 40–45.
[10] Z.H. Chang and W. Wei-ping, An improved PSO-based rule extraction algorithm for intrusion detection, Int. Conf. Comput. Intell. Natural Comput., 2009, pp. 56–58.
[11] C.H. Chongeikloo, M. Munng, C.H. Leckie and M. Palaniswami, Intrusion detection for routing attacks in sensor networks, Int. J. Distributed Sensor Networks 2 (2006), 313–332.
[12] J. Chunlin, Zh. Yangyang, G. Shing, Y. Ping and L. Zhe, Particle swarm optimization for mobile ad hoc networks clustering, Int. Conf. Network. Sens. Control, Taipei. Taiwan, March 21-23, IEEE, 1 (2004), 372–375.
[13] G.B. Dantzig, Linear programming and extensions, Princeton University Press, 1963.
[14] P. Dixit, R. Kohli, A. Acevedo-Duque, R.R. Gonzalez-Diaz and R.H. Jhaveri, Comparing and analyzing applications of intelligent techniques in cyberattack detection, Secur. Commun. Netw. 2021 (2021), 5561816.
[15] M. Dorigo and T. Stutzle, Ant colony optimization, MIT Press, 2004.
[16] S. Einy, Oz. Cemil and Y. Dorostkar Navaei, Network intrusion detection system based on the combination of multiobjective particle swarm algorithm-based feature selection and fast-learning network, Wireless Commun. Mobile Comput. 2021 (2021), 6648351, 12 pages.
[17] J. D. Farmer, N. Packard and A. Perelson, The immune system, adaptation and machine learning, Phys. D. 2 (1986), 187–204.
[18] M. Feng and H. Pan, A modified PSO algorithm based on cache replacement algorithm, 10th Int. Conf. Comput. Intell. Secur., 2014, pp. 558–562.
[19] Z.W. Geem, J. H. Kim and G.V. Loganathan, A new heuristic optimization: Harmony search, Simul. 76 (2001), 60–68.
[20] D. Ghose and K. Krishnanand, Glowworm Swarm Optimization for simultaneous capture of multiple local optima of multimodal functions, 3 (2009), no. 2, 87–124.
[21] F. Glover and G.A. Kochenberger, Handbook of Metaheuristics, Springer, 2003.
[22] F. Glover and M. Laguna, Tabu Searc, Kluwer, Boston, 1997.
[23] F. Glover, Future paths for integer programming and links to artificial intelligence, Comput. Oper. Res. 13 (1986), 533–549.
[24] D.E. Goldberg, Genetic algorithms in search, optimization and machine learning, Reading, Mass, Addison Wesley, 1989.
[25] A. Gupta and S.P. Ranga, Wormhole Detection Methods in Manet, Int. J. Enterprise Comput. Bus. Syst. 2 (2012), no. 2, 1–8.
[26] O.B. Haddad, A. Afshar and M.A. Marino, Honey-bees mating optimization (HBMO) algorithm: a new heuristic approach for water resources optimization, Water Resources Manag. 20 (2006), 661–680.
[27] A. Haghighat, M. Esmaeili, A. Saremi and V.R. Mousavi, Intrusion detection via fuzzy-genetic algorithm combination with evolutionary algorithms, 6th IEEE/ACIS Int. Conf. Comput. Inf. Sci. (ICIS 2007). IEEE, 2007, pp. 587–591.
[28] J. Holland, Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, 1975.
[29] M. Hosseinzadeh-Aghdam and P. Kabiri, Feature selection For intrusion detection system using ant colony optimization, Int. J. Network Secur. 18 (2016), no. 3, 420–432.
[30] P. Kabiri and M. Aghaei, Feature Analysis for Intrusion Detection in Mobile Ad-hoc Networks, Int. J. Network Secur. 12 (2011), no. 1, 42–49.
[31] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical Report TR06, Erciyes University, Turkey, 2005.
[32] J. Kennedy and R.C. Eberhart, Particle swarm optimization, Proc IEEE Int. Conf. Neural Networks Piscataway, 1995, pp. 1942–1948.
[33] S. Kirkpatrick, C.D. Gelatt and M. P. Vecchi, Optimization by simulated annealing, Sci. 220 (1983), no. 4598, 671–680
[34] K. Krishnanand and D. Ghose, Glowworm swarm-based optimization algorithm for multimodal functions with collective robotics applications, Multiagent Grid Syst. 2 (2006), no. 3, 209–222.
[35] R. Kulkarni, A.Venayagamoorthy Miller and C. Dagli, Network-centric localization in MANETs based on particle swarm optimization, IEEE Swarm Intell. Symp., IEEE, 2008.
[36] M. Kumar, M. Hanumanthappa and S. Kumar, Intrusion detection system-false positive alert reduction technique, 2 (2011), no. 3, 37–40.
[37] L. Lifang He, X. Xiong and S. Huang, A glowworm swarm optimization algorithm with improved movement rule, Fifth Int. Conf. Intell. Networks Intell. Syst., 2012, pp. 109–112.
[38] A. Mokarian, A. Faraahi and A. Ghorbannia-Delavar, False positives reduction techniques in intrusion detection systems-A review, IJCSNS Int. J. Comput. Sci. Network Secur. 13 (2013), no. 10, 128–134.
[39] P. Moscato, On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms, Caltech Concurrent Computation Program (report 826), 1989.
[40] Md. Mostaque and H. Morshedur, Network intrusion detection system using genetic algorithm and fuzzy logic, Int. J. Innov. Res. Comput. Commun. Engin. 1 (2013), no. 7, 1435–1445.
[41] N. Neha Rai and KH. Rai, Genetic Algorithm Based Intrusion Detection system, Int. J. Comput. Sci. Inf. Technol. 5 (2014), 4952–4957.
[42] S. Owais, P. Pavel Krmer and A. Abraham, Survey: Using genetic algorithm approach in intrusion detection systems techniques, 7th Comput. Inf. Syst. Ind. Manag. Appl., IEEE, 2008, pp. 300–307.
[43] K. M. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag. 22 (2002), no. 3, 52–67.
[44] I. Pavlyukevich, L´evy flights, non-local search and simulated annealing, Comput. Phys. 226 (2007), 1830–1844.
[45] D.T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim and M. Zaidi, The Bees Algorithm, Technical Note, Manufacturing Engineering Centre, Cardiff University, UK, 2005.
[46] K. Price, R. Storn and J. Lampinen, Differential evolution: A practical approach to global optimization, Springer, 2005.[47] R.F. Moritz and E.E. Southwick, Bees as superorganisms, Springer, 1992.
[48] S. Rethinavalli and R. Gopinath, Classification approach-based sybilnode detection in mobile ad HOC networks, Int. J. Adv. Res. Engin. Technol. 11 (2020), no. 12, 3348–3356.
[49] K. Rhee, Detecting inner attackers and colluded nodes in wireless sensor networks using hop-depth algorithm, J. Instit. Electron. Engin. Korea CI 44 (2007), no. 1, 113–121.
[50] O.J. Rotimi, S. Misra, A. Agrawal, E. Azubuike, R. Maskeliunas and R. Damasevicius, Curbing Criminal Acts on Mobile Phone Network, Cyber Security and Digital Forensics; Springer: Berlin/Heidelberg, Germany, 2022, 99-111.
[51] R.Y. Rubinstein, Optimization of computer simulation models with rare events, Eur. J. Oper. Res. 99 (1997), 89–112.
[52] S. Nakrani and C. Tovey, On honey bees and dynamic server allocation in Internet hosting centers, Adaptive Behav. 12 (2004), 223–240.
[53] F. Sabahi and A. Movaghar, Intrusion detection: A survey , Third Int. Conf. Syst. Networks Commun., 2008, pp. 23–26.
[54] S. Sevil and J. Clark, Evolutionary computation techniques for intrusion detection in mobile ad hoc networks, Department Comput. Engin. 55 (2011), no. 15, 3441-3457.
[55] J. Soryal and T. Saadawi, IEEE 802.11 Denial of Service Attack Detection in MANET, Wireless Telecommun. Symp. (WTS), (2012), 1-8.
[56] R. Storn and K. Price, Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11 (1997), 341–359.
[57] E. G. Talbi, Metaheuristics: From Design to Implementation, John Wiley & Sons, 2009.
[58] C. Trang, H. Kong and H. Lee, A distributed intrusion detection system for AODV, Asia-Pacific Conf. Commun., IEEE, 2006, pp. 1–4.
[59] S. Voss, Meta-heuristics: the state of the art, Local Search for Planning and Scheduling (Ed. A. Nareyek), LNAI 2148 (2001), 1–23.
[60] T. Weise, Genetic programming for sensor networks, Technical Report (2006), 1–16.
[61] X.S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, UK, 2008.
[62] X.S. Yang, Engineering Optimization: An Introduction with Metaheuristic Applications, John Wiley & Sons, 2010.
[63] X.S. Yang and S. Deb, Engineering optimization by cuckoo search, Int. J. Math. Modell. Num. Optim. 1 (2010), no. 4, 330–343.
[64] X.S. Yang, Firefly algorithms for multimodal optimization, 5th Symp. Stochastic Algorithms Found. Appl. LNCS 5792 (2009), 169–178.
[65] X.S. Yang, Engineering optimization via nature-inspired virtual bee algorithms, IWINAC Lecture Notes Comput. Sci. 3562 (2005), 317–323.
[66] Y. Zhou, G. Cheng, S. Jiang and M. Dai, Building an efficient intrusion detection system based on feature selection and ensemble classifier, Comput. Netw 174 (2020), 107–247.