[1] M. Aamri and D. El Moutawakil, τ -distance in general topological spaces (X, τ ) with application to fixed point theory, Southwest J. Pure Appl. Math., 2 (2003), 1–5.
[2] Ya.I. Alber and S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, New Results in Operator Theory and Its Applications, Birkhauser Verlag, Basel, 1997.
[3] R. Bellman, Dynamic programming, Princeton University Press, Princeton, 1957.
[4] R. Bellman and E.S. Lee, Functional equations arising in dynamic programming, Aequ. Math. 17 (1978), 1—18.
[5] F.E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sei. U.S.A. 54 (1965), no. 4, 1041–1044.
[6] J.A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), 396–414.
[7] A.P. Farajzadeh, M. Delfani and Y.H. Wang, Existence and uniqueness of fixed points of generalized F-contraction mappings, J. Math.. 2021 (2021), Article ID 6687238, 9 pages.
[8] A. Farajzadeh, S. Suanthai and M. Delfani, A modication of simulation function and its applications to fixed point theory, Thai J. Math. 2021.
[9] D. G¨ohde, Zum prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258.
[10] F. Khojasteh, S. Shukla and S. Radenovic, A new approach to the study of fixed point theorems via simulation functions, Filomat 29 (2015), no. 6, 1189–1194.
[11] I. Rus, A. Petru¸sel and G. Petru¸sel, Fixed point theory, Univ. Press, Cluj, 2008.
[12] B. Samet, C. Vetro and P. Vetro, Fixed point theorems for α − ψ-contractive type mappings, Nonlinear Anal. 75 (2012), no. 4, 2154–2165.
[13] A. Taheri and A. Farajzadeh, A new generalization of type almost contractions and type Suzuki contractions in metric spaces and their fixed point theorems, Carpathian Math. Publ. 11 (2019), 475–492.
[14] Y. Touail, D. El Moutawakil and S. Bennani, Fixed Point theorems for contractive self mappings of a bounded metric space, J. Funct. Spaces 2019 (2019), Article ID 4175807, 3 pages.
[16] Y. Touail and D. El Moutawakil, ⊥ψF -contractions and some fixed point results on generalized orthogonal sets, Rend. Circ. Mat. Palermo, Ser. 2 70 (2021), no. 3, 1459-1472.
[17] Y. Touail and D. El Moutawakil, New common fixed point theorems for contractive self mappings and an application to nonlinear differential equations, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 1, 903–911.
[18] Y. Touail and D. El Moutawakil, Fixed point theorems for new contractions with application in dynamic programming, Vestnik St. Petersburg University, Math. 54 (2021), no. 2, 206–212.
[19] Y. Touail and D. El Moutawakil, Fixed point theorems on orthogonal complete metric spaces with an application, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 1801–1809.
[20] Y. Touail and D. El Moutawakil, Some new common fixed point theorems for contractive self mappings with applications, Asian-Eur. J. Math. 15 (2022), no. 4, 2250080.
[21] Y. Touail, A. Jaid and D. El Moutawakil, New contribution in fixed point theory via an auxiliary function with an application, Ricerche mat (2021). https://doi.org/10.1007/s11587-021-00645-6