[1] Z. Aaron, C.H. Song, W. Zhaoshun and C. Mumbi, Modeling and detection of the multi-stages of Advanced
Persistent Threats attacks based on semi-supervised learning and complex networks characteristics, Future Gen.
Comput. Syst. 106 (2020), 501–517.
[2] A. Alshamrani, A. Chowdhary, O. Mjihil, S. Myneni and D. Huang, Combining dynamic and static attack information for attack tracing and event correlation, 2018 IEEE Glob. Commun. Conf. (GLOBECOM), 2018, pp.
1–7.
[3] A. Alshamrani, A. Chowdhary, S. Myneni and D. Huang, A survey on advanced persistent threats: Techniques,
solutions, challenges, and research opportunities, IEEE Commun. Surv. Tutor. 1 (2019), 1–29.
[4] D.X. Cho and H.H. Nam, Method of monitoring and detecting APT attacks based on unknown domains, Procedia
Comput. Sci. 150 (2019), 316–323.
[5] X.C. Do, D. Duc and D.H. Xuan, A multi-layer approach for advanced persistent threat detection using machine
learning based on network traffic, J. Intell.Fuzzy Syst. 40 (2021), no. 6, 11311–11329.
[6] I. Ghafir, M. Hammoudeh, V. Prenosil, L. Han, R. Hegarty, K. Rabie and F.J. Aparicio-Navarro, Detection of
advanced persistent threat using machine-learning correlation analysis, Future Gen. Comput. Syst. 89 (2018),
349–359.
[7] I. Ghafir, K.G. Kyriakopoulos, S. Lambotharan, F.J. Aparicio-Navarro, B. AsSadhan, H. Binsalleeh, D.M. Diab,
Hidden Markov models and alert correlations for the prediction of advanced persistent threats, IEEE Access 7
(2019), 99508–99520.
[8] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput. 9 (1997), no. 8, 1735—1780.
[9] H. Huang, H. Deng, Y. Sheng and X. Ye, Accelerating convolutional neural network-based malware traffic detection
through ant-colony clustering, J. Intell. Fuzzy Syst. 37 (2019), 409–423.[10] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T. Kim, A. Orso and W. Lee, Rain: Refinable attack investigation
with on-demand inter-process information flow tracking, ACM SIGSAC Conf. Comput. Commun. Security, 2017,
pp.377–390.
[11] A. Lajevardi and M. Amini, A semantic-based correlation approach for detecting hybrid and low-level APTs,
Future Gen. Comput. Syst. 96 (2019), 64–88.
[12] S. Ma, J. Zhai, F. Wang, K.H. Lee, X. Zhang and D. Xu, MPI: Multiple perspective attack investigation with
semantic aware execution partitioning, 26th USENIX Conf. Security Symp., 2017, pp. 1111-–1128.
[13] Malware Capture Facility Project, Available online: https://www.stratosphereips.org/datasets-malware. (Accessed on 8 June 2021).
[14] M. Marchetti, F. Pierazzi, M. Colajanni and A. Guido, Analysis of high volumes of network traffic for Advanced
Persistent Threat detection, Comput. Networks 109 (2016), 127–141.
[15] H. Peng, L. Liu, J. Liu and J.R. Lewis, Network traffic anomaly detection algorithm using mahout classifier, J.
Intell. Fuzzy Syst. 37 (2019), 137–144.
[16] M. Shen, P. Ju and F. Shumin, Event-triggered nonfragile H∞H∞ filtering of Markov jump systems with imperfect
transmisions, Signal Process. 149 (2018).
[17] A. Sherstinsky, Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network,
Phys. D: Nonlinear Phenomena 404 (2020).
[18] Suricata, Available online: https://suricata-ids.org/. (Accessed Feb 14, 2020).
[19] N. Van Can, D.N. Tu, T.A. Tuan, H.V. Long, L.H. Son and N.T.K. Son, A new method to classify malicious
domain name using neutrosophic sets in DGA botnet detection, J. Intell. Fuzzy Syst. 36 (2020), 4223–4236.
[20] R. Vinayakumara, K.P. Somana and P. Poornachandranb, Detecting malicious domain names using deep learning
approaches at scale, J. Intell. Fuzzy Syst. 34 (2018), 1355–1367.
[21] H. Wang, Z. Cao and B Hong, A network intrusion detection system based on convolutional neural network, J.
Intell. Fuzzy Syst. 38 (2020), 7623–7637.
[22] F. Wang, Y. Kwon, S. Ma and X. Zhang, Lprov: Practical library-aware provenance tracing, 34th Ann. Comput.
Security Appl. Conf., 2018, pp.605–617.
[23] L.C. Wen, J.L. Chih and N.C. Ke, Detection and classification of advanced persistent threats and attacks using
the support vector machine, Appl. Sci. 9 (2019), 45–79.
[24] Z. Xiang, D. Guo and Q. Li, Detecting mobile advanced persistent threats based on large-scale DNS logs, Comput.
Secur. 96 (2020).
[25] W. Xianming, Q. Wen, P. Ju and Mo. Shen, Event-triggered data-driven control of discrete-time nonlinear systems
with unknown disturbance, ISA Transactions (2021) doi:10.1016/j.isatra.2021.11.026.
[26] C.D. Xuan, Detecting APT attacks based on network traffic using machine learning, J. Web Engin. 20 (2021),
no. 1, 171–190.
[27] C.D. Xuan and H.M. Dao, A novel approach for APT attack detection based on combined deep learning model,
Neural Comput. Appl. 33 (2021), no. 20, 13251–13264.
[28] C.D. Xuan, H.D. Nguyen and H.M. Dao, APT attack detection based on flow network analysis techniques using
deep learning, J. Intell. Fuzzy Syst. 290 (2020), no. 3, 4785–4801.
[29] S. Yan, Z. Gu, J. H. Park, X. Xie and C. Dou, Probability-density-dependent load frequency control of
power systems with random delays and cyber-attacks via circuital implementation, IEEE Trans. Smart Grid
doi:10.1109/TSG.2022.3178976.
[30] S. Yan, Z. Gu and J. H. Park, Memory-event-triggered H∞ load frequency control of multi-area power systems
with cyber-attacks and communication delays, IEEE Trans. Network Sci. Engin. 8 (2021), no. 2, 1571–1583.
[31] S. Yan, Z. Gu, S.K. Nguang, F. Yang and L. Zhang, Co-design of event-triggered scheme and H∞ output control
for Markov jump systems against deception attacks, IEEE Access 8 (2020), 106554–106563.[32] G. Yan, Q. Li, D. Guo and X. Meng, Discovering suspicious APT behaviors by analyzing DNS activities, Sensors
20 (2020), 1–17.
[33] S. Yan, S.K. Nguang and L. Zhang, Nonfragile integral-based event-triggered control of uncertain cyber-physical
systems under cyber-attacks, Complexity 2019 (2019).