Electric quadrupole transition in neutron rich 3242S-isotopes with different model spaces

Document Type : Research Paper

Authors

Department of Physics, College of Science, University of Baghdad, Iraq

Abstract

The electromagnetic properties of some even neutron rich Sulfur-isotopes 3242 S are studied through the electric quadrupole transition (01+21+). In particular, excitation energies Ex, occupancies, electric quadrupole moments Q, transition strengths B(E2), deformation parameters β2 and the coulomb inelastic electron scattering form factors are calculated for the adopted isotopes within the framework of shell model. The shell model calculations are performed with full sd-model space, psd - and sdpf - cross shell, using different interactions. The results are based on sdba and psdmk interactions for sulfur with N20, while sdpfk and sdpfu interactions are dependent for sulfur with N>20. The core polarization effects (CP) are included through the Boher-Mottelson (BM) and standard (ST) effective charges to obtain a reasonable description of the electric quadrupole moments and C2 form factors. The results of psdmk and sdba-interactions fail to reproduce the measured B(E2) strengths and deformation β2 for 3236 S, except for 36 S nucleus is close to the measured value. The results for 3842 S with both sdpfk and sdpfu interactions nicely confirm the measured values of B(E2) strengths and deformation β2 within the experimental error. The influence of the nuclear deformation parameter β2 on the location of the diffraction minima of C2 form factors are also indicated.

Keywords

[1] A.N. Bohr and B.R. Mottelson, Nuclear Structure (in 2 volumes), World Scientific Publishing Company, 1998.
[2] B.A. Brown, R. Radhi and B.H. Wildenthal, Electric quadrupole and hexadecupole nuclear excitations from the perspectives of electron scattering and modern shell-model theory, Phys. Rep. 101 (1983), no. 5, 313–358.
[3] B.A. Brown, A. Arima and J.B. McGrory, E2 core-polarization charge for nuclei near 16O and 40Ca, Nuclear Phys. A 277 (1977), no. 1, 77–108.
[4] B.A. Brown, A. Etchegoyen and N.S. Godwin, WDM rae, WA Richter, WE Ormand, EK Warburton, JS Winfield,
L. Zhao, and CH Zimmerman, Tech. Rep. MSU-NSCL-1289, National SuperConducting Cyclotron Laboratory,
2004.
[5] P.J. Brussaard and P.W.M. Glaudemans, Shell-model applications in nuclear spectroscopy, North-Holland Publishing Company, 1977.
[6] T. Forest Jr and J. Dirk Walecka, Electron scattering and nuclear structure, Adv. Phys. 15 (1966), no. 57, 1–109.
[7] T.W. Donnelly and J.D. Walecka, Electron Scattering and Nuclear Structure, Ann. Rev. Nuclear Sci. 25 (1975), no. 1, 329–405.
[8] T.W. Donnelly and I. Sick, Elastic magnetic electron scattering from nuclei, Reviews of modern physics 56 (1984), no. 3, 461.
[9] J.P. Elliott and T.H.R. Skyrme, Centre-of-mass effects in the nuclear shell-model, Proc. Royal Soc. London. Series A. Math. Phys. Sci. 232 (1955), no. 1191, 561–566.
[10] T. Glasmacher, B.A. Brown, M.J. Chromik, P.D. Cottle, M. Fauerbach, R.W. Ibbotson, K.W. Kemper, D.J. Morrissey, H. Scheit and D.W. Sklenicka, Collectivity in 44S, Phys. Lett. B 395 (1997), no. 3-4, 163–168.
[11] J.P. Glickman, W. Bertozzi, T.N. Buti, S. Dixit, F.W. Hersman, C.E. Hyde-Wright, M.V. Hynes, R.W. Lourie, B.E. Norum and J.J. Kelly, Electron scattering from Be 9, Phys. Rev. C 43 (1991), no. 4, 1740.
[12] .K Kaneko, Y. Sun, T. Mizusaki and M. Hasegawa, Shell-model study for neutron-rich sd-shell nuclei, Phys. Rev. C 83 (2011), no. 1, 014320.
[13] E. Kwan, C.Y. Wu, N.C. Summers, G. Hackman, T.E. Drake, C. Andreoiu, R. Ashley, G.C. Ball, P.C. Bender and A.J. Boston, Precision measurements of the B (E1) strengths in 11Be, Fission and Properties of Neutron-Rich Nuclei, World Scientific, 2014, pp. 678–681.
[14] B. Longfellow, D. Weisshaar, A. Gade, B.A. Brown, D. Bazin, K.W. Brown, B. Elman, J. Pereira, D. Rhodes and M. Spieker, Quadrupole collectivity in the neutron-rich sulfur isotopes S 38, 40, 42, 44, Phys. Rev. C 103 (2021), no. 5, 054309.
[15] D.J. Millener and D. Kurath, The particle-hole interaction and the beta decay of 14B, Nuclear Phys. A 255 (1975), no. 2, 315–338.
[16] F. Nowacki and A. Poves, New effective interaction for θhω shell-model calculations in the sd-pf valence space, Phys. Rev. C 79 (2009), no. 1, 014310.
[17] T. Otsuka, A. Gade, O. Sorlin, T. Suzuki and Y. Utsuno, Evolution of shell structure in exotic nuclei, Rev. Mod. Phys.92 (2020), no. 1, 015002.
[18] B. Pritychenko, M. Birch, B. Singh and M. Horoi, Tables of E2 transition probabilities from the first 2+ states in even-even nuclei, At. Data Nucl. Data Tables 107 (2016), 1–139.
[19] R.A. Radhi, A.A. Alzubadi and A.H. Ali, Magnetic dipole moments, electric quadrupole moments, and electron scattering form factors of neutron-rich s d-p f cross-shell nuclei, Phys. Rev. C 97 (2018), no. 6, 064312.
[20] R.A. Radhi, Z.A. Dakhil and N.S. Manie, Microscopic calculations of quadrupole moments in Li and B isotopes, Eur. Phys. J. A 50 (2014), no. 7, 1–9.
[21] S. Raman and C.W. Nestor, Jr., and P. Tikkanen, At. Data Nucl. Data Tables 78 (2001), no. 1, 43.
[22] W.A. Richter, S. Mkhize, and B Alex Brown, sd-shell observables for the USDA and USDB Hamiltonians, Phys. Rev. C 78 (2008), no. 6, 064302.
[23] H. Sagawa and B.A. Brown, E2 core polarization for sd-shell single-particle states calculated with a skyrmion-type interaction, Nuclear Phys. A 430 (1984), no. 1, 84–98.
[24] A. Saxena, A. Kumar, V. Kumar, P.C. Srivastava and T. Suzuki, Ab initio description of collectivity for sd shell nuclei, Hyperfine Interact.240 (2019), no. 1, 1–8.
[25] H. Scheit, T. Glasmacher, B.A. Brown, J.A. Brown, P.D. Cottle, P.G. Hansen, R. Harkewicz, M. Hellstrom, R.W. Ibbotson and J.K. Jewell, New region of deformation: The neutron-rich sulfur isotopes, Phys. Rev. Lett. 77 (1996), no. 19, 3967.
[26] O. Sorlin and M.-G. Porquet, Nuclear magic numbers: New features far from stability, Prog. Part. Nuclear Phys. 61 (2008), no. 2, 602–673.
[27] N.J. Stone, Table of nuclear magnetic dipole and electric quadrupole moments, At. Data Nuc. Data Tables 90 (2005), no. , 75–176.
[28] L. Jo Tassie and F.C. Barker, Application to electron scattering of centre-of-mass effects in the nuclear shell model, Phys. Rev. 111 (1958), no. 3, 940.
[29] Y. Utsuno, T. Otsuka, B.A. Brown, M. Honma, T. Mizusaki and N. Shimizu, Shape transitions in exotic Si and S isotopes and tensor-force-driven Jahn-Teller effect, Phys. Rev. C 86 (2012), no. 5, 051301.
[30] T.R. Werner, J.A. Sheikh, M. Misu, W. Nazarewicz, J. Rikovska, K. Heeger, A.S. Umar and M.R. Strayer, Ground-state properties of exotic Si, S, Ar and Ca isotopes, Nuclear Phys. A 597 (1996), no. 3, 327–340.
[31] B.H. Wildenthal, B.A. Brown and I. Sick, Electric hexadecupole transition strength in S 32 and shell-model predictions for E4 systematics in the sd shell, Phys. Rev. C 32 (1985), no. 6, 2185.
[32] S.-G. Zhou, Structure of exotic nuclei: a theoretical review, arXiv preprint arXiv:1703.09045 (2017).
Volume 13, Issue 2
July 2022
Pages 3127-3137
  • Receive Date: 06 November 2021
  • Revise Date: 20 February 2022
  • Accept Date: 19 March 2022