Hyperstability of bi-Cauchy-Jensen functional equations

Document Type : Research Paper

Authors

1 Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand

2 Research Center for Academic Excellence in Mathematics, Naresuan University, Thailand

Abstract

In this paper, we prove some hyperstability results of the bi-Cauchy-Jensen functional equation: $2f\left( x+y,\frac{z+w}{2} \right) = f(x,z) + f(x,w) + f(y,z) + f(y,w)$ in Banach spaces by using fixed point method.

Keywords

[1] S. Abbaszadeh and M. E. Gordji, On the orthogonal pexider derivations in orthogonality Banach algebras, Fixed Point Theory 17 (2016), no. 2, 327–340.
[2] M. Almahalbi and A. Chahbi, Hyperstability of the Jensen functional equation in ultrametric spaces, Aequat. Math. 91 (2017), 647–661.
[3] M. Almahalebi, A. Charifi and S. Kabbaj, Hyperstability of a Cauchy functional equation, J. Nonlinear Anal. Optim. 6 (2015), 127–137.
[4] Y. Aribou, M. Almahalebi and S. Kabbaj, Hyperstability of cubic functional equation in ultrametric spaces, Proyecciones J. Math. 36 (2017), 461–484.
[5] J.H. Bae and W.G. Park, A fixed point approach to the stability of a Cauchy-Jensen functional equation, Abstr. Appl. Anal. 2012 (2012), Article ID 205160.
[6] J.H. Bae and W.G. Park, On the Ulam stability of the Cauchy-Jensen equation and the additive-quadratic equation, J. Nonlinear Sci. Appl. 8 (2015), 710–718.
[7] A. Bahraini, G. Askari, M.E. Gordji and R. Gholami, Stability and hyperstability of orthogonally ∗-mhomomorphisms in orthogonally Lie C*-algebras: a fixed point approach, J. Fixed Point Theory Appl. 20 (2018), no. 2, 1–12.
[8] D.G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385–397.
[9] J. Brzd¸ek, Hyperstability of the Cauchy equation on restricted domains, Acta. Math. Hung. 141 (2013), 58–67.
[10] J. Brzd¸ek, Remarks on hyperstability of the Cauchy functional equation, Aequat. Math. 86 (2013), 255–267.
[11] J. Brzd¸ek, A hyperstability result for the Cauchy equation, Bull. Aust. Math. Soc. 89 (2014), 33–40.
[12] J. Brzd¸ek and K. Ciepli˜nski, Hyperstability and superstability, Abstr. Appl. Anal. 2013 (2013), Article ID 401756.
[13] J. Brzd¸ek, J. Cieplinski and Z. P´ales, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 (2011), 6728–6732.
[14] J. Brzd¸ek, W. Fechner, M.S. Moslehian and J. Silorska, Recent developments of the conditional stability of the homomorphism equation, Banach J. Math. Anal. 9 (2015), 278–326.
[15] J. Brzd¸ek, D. Popa, I. Rasa and B. Xu, Ulam Stability of Operators, Mathematical Analysis and its Applications, vol. 1, Academic Press, Elsevier, Oxford. 2018.
[16] Y.J. Cho, C. Park, Th.M. Rassias and R. Saadati, Stability of Functional Equations in Banach Algebras, Springer, New York, 2015.
[17] Y.J. Cho, C. Park and R. Saadati, Functional inequalities in non-Archimedean in Banach spaces, Appl. Math. Lett. 60 (2010), 1994–2002.
[18] Y.J. Cho, Th.M Rassias and R. Saadati, Stability of Functional Equations in Random Normed Spaces, Springer, New York, 2013.
[19] J.B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309.
[20] I.E. Fassai, J. Brzd¸ek, A. Chahbi and S. Kabbaj, On the hyperstability of the biadditive functional equation, Acta. Math. Sci. 37B (2017), no. 6, 1727–1739.
[21] P. G˘avrut¸a, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapping, J. Math. Anal. Appl. 184 (1994), 431–436.
[22] R. Gholami, G. Ansari and M. E.Gordji, Stability and hyperstability of orthogonally ring ∗-n-derivations and orthogonally ring ∗-n-homomorphisms on C*-algebras, J. Linear Topological Algebra 7 (2018), no. 2, 109–119.
[23] M.E. Gordji and S. Abbaszadeh, Theory of approximate functional equations in Banach algebras, Inner product spaces and amenable groups, Elsevier Science Publishing Co Inc, San Diego, United States, 2016.
[24] M.E. Gordji and S. Abbaszadeh, A fixed point method for proving the stability of ring (α, β, γ)-derivations in 2-Banach algebras, J. Linear Topological Algebra 6 (2017), no. 4, 269–276.
[25] M.E. Gordji, G. Askari, N. Ansari, G.A. Anastassiou and C. Park, Stability and hyperstability of generalized orthogonally quadratic ternary homomorphisms in non-Archimedean ternary Banach algebras: a fixed point approach, J. Comput. Anal. Appl. 21 (2016), no. 3.
[26] M.E. Gordji, H. Khodaei and M. Kamyar, Stability of Cauchy-Jensen type functional equation in generalized fuzzy normed spaces, Comput. Math. Appl. 62 (2011), 2950–2560.
[27] M.E. Gordji, H. Khodaei and T.M. Rassias, Fixed points and generalized stability for quadratic and quartic mappings in C*--algebras, J. Fixed Point Theory Appl. 17 (2015), 703–715.
[28] E. Gselmann, Hyperstability of a functional equation, Acta. Math. Hung. 124 (2009), 179–188.
[29] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. United States 27 (1941), no. 4, 222–224.
[30] K.W. Jun and Y.H. Lee On the stability of a Cauchy-Jensen functional equation II, Dynam. Syst. Appl. 18 (2009),407–422.
[31] K.W. Jun, Y.H. Lee and J.A. Son, On the stability of a Cauchy-Jensen functional equation III, Korean J. Math. 16 (2008), 205–214.
[32] H. Khodaei, Hyperstability of the generalized polynomial functional equation of degree 5, Mediterr. J. Math. 13 (2016), 1829–1840.
[33] Y.H. Lee, On the Hyers-Ulam-Rassias stability of a Cauchy-Jensen functional equation, Chungcheong Math. Soc. 20 (2007), no. 2, 163–172.
[34] G. Maksa and Z. Pales, Hyperstability of a class of linear functional equations, Acta. Math. Acad. Paedagog. Nyh´azi. 17 (2001), 107–112.
[35] Z. Moszner, Stability has many names, Aequat. Math. 90 (2016), 983–999.
[36] W.G. Park and J.H. Bae, On a Cauchy-Jensen functional equation and its stability, J. Math.Anal. Appl. 323 (2006), 634–643.
[37] C. Park, Y.J. Cho and H.A. Kenary, Orthogonal stability of a generalized quadratic functional equation in non-archimedean spaces, J. Comput. Anal. Appl. 14 (2012), 526–535.
[38] M. Piszczek, Remark on hyperstability of the general linear equation, Aequat. Math. 88 (2014), 163–168.
[39] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
[40] M. Sirouni and S. Kabbaj, A fixed point approach to the hyperstability of Drygas functional equation in metric spaces, J. Math. Comput. Sci. 4 (2014), 705–715.
[41] S.M. Ulam, A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, USA, 1960.
Volume 13, Issue 2
July 2022
Pages 3145-3160
  • Receive Date: 14 July 2020
  • Revise Date: 22 September 2020
  • Accept Date: 28 September 2020