[1] M.D. Abràmoff, Y. Lou, E. Ali, C. Warren, A. Ryan, J.C. Folk and M. Niemeijer, Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning, Invest. Opthalmol. Vis. Sci. 57 (2016), no. 13, 5200–5206.
[2] K. Adem, Exudate detection for diabetic retinopathy with circular Hough transformation and convolutional neural networks, Expert Syst. Appl. 114 (2018), 289–295.
[3] W.L. Alyoubi, W.M. Shalash and M.F. Abulkhair, Diabetic retinopathy detection through deep learning techniques: A review, Inf. Med. Unlocked 20 (2020), 100377.
[4] N. Asiri, M. Hussain, F. Al Adel and N. Alzaidi, Deep learning based computer-aided diagnosis systems for diabetic retinopathy: A survey, Artif. Intel. Med. 99 (2019), 101701.
[5] M.A. Bennet, D. Dharini and S.M. Priyadharshini, Detection of blood vessel segmentation in retinal images using adaptive filters, J. Chem. Pharmac. Res. 8 (2016), no. 4, 290–298.
[6] P. Chudzik, S. Majumdar, F. Calivá, B. Al-Diri and A. Hunter, Microaneurysm detection using fully convolutional neural networks, Comput. Meth. Prog. Biomed. 158 (2018), 185–192.
[7] E. Decenciere, G. Cazuguel, X. Zhang, G. Thibault, J.C. Klein, F. Meyer, B. Marcotegui, G. Quellec, M. Lamard, R. Danno and D. Elie, TeleOphta: Machine learning and image processing methods for teleophthalmology, Irbm 34 (2013), no. 2, 196–203.
[8] E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin, A. Erginay and B. Charton, Feedback on a publicly distributed image database: the Messidor database, Image Anal. Ster. 33 (2014), no. 3, 231–234.
[9] D. Doshi, A. Shenoy, D. Sidhpura and P. Gharpure, Diabetic retinopathy detection using deep convolutional neural networks, Int. Conf. Comput. Anal. Secur. Trends (CAST), IEEE, 2016, pp. 261–266.
[10] S. Dutta, B.C. Manideep, S.M. Basha, R.D. Caytiles and N.C.S.N. Iyenger, Classification of diabetic retinopathy images by using deep learning models, Int. J. Grid Distrib. Comput. 11 (2018), no. 1, 89–106.
[11] M. Esmaeili, H. Rabbani, A.M. Dehnavi and A. Dehghani, Automatic detection of exudates and optic disk in retinal images using curvelet transform, IET Image Process. 6 (2012), no. 7, 1005–1013.
[12] R. Gargeya and T. Leng, Automated identification of diabetic retinopathy using deep learning, Ophthalmology 124 (2017) no. 7, 962–969.
[13] K.A. Goatman, A.D. Whitwam, A. Manivannan, J.A. Olson and P.F. Sharp, Colour normalisation of retinal images, Proc. Med. Imag. Understanding Anal. 2003, pp. 49–52.
[14] M.T. Hagos and S. Kant, Transfer learning based detection of diabetic retinopathy from small dataset, arXivpreprint arXiv:1905.07203, (2019).
[15] S. Hajeb Mohammad Alipour, H. Rabbani and M.R. Akhlaghi, Diabetic retinopathy grading by digital curvelet transform, Comput. Math. Meth. Med. 2012 (2012).
[16] Y. Hatanaka, K. Ogohara, W. Sunayama, M. Miyashita, C. Muramatsu and H. Fujita, Automatic microaneurysms detection on retinal images using deep convolution neural network, Int. Workshop Adv.Image Technol. (IWAIT), IEEE, 2018, pp. 1–2.
[17] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, Proc. IEEE Conf. Comput. Vision Pattern Recogn., 2016, pp. 770–778.
[18] L. Hill and L.E. Makaroff, Early detection and timely treatment can prevent or delay diabetic retinopathy, Diabetes Res. Clin. Pract. 120 (2016), 241–243.
[19] A. Hoover, V. Kouznetsova and M. Goldbaum, Locating blood vessels in retinal images by piece-wise threshold probing of a matched filter response, IEEE Trans. Med. Imag. 19 (2000), no. 3, 203–210.
[20] K. Hu, Z. Zhang, X. Niu, Y. Zhang, C. Cao, F. Xiao and X. Gao, Retinal vessel segmentation of color fundus images using multiscale convolutional neural network with an improved cross-entropy loss function, Neurocomput. 309 (2018), 179–191.
[21] A.J. Jenkins, M.V. Joglekar, A.A. Hardikar, A.C. Keech, D.N. O’Neal and A.S. Januszewski, Biomarkers in diabetic retinopathy, Rev. Diabet. Stud. 12 (2015), no. 1-2, 159–195.
[22] Y. Kanagasingam, D. Xiao, J. Vignarajan, A. Preetham, M.-L. Tay-Kearney and A. Mehrotra, Evaluation of artificial intelligence-based grading of diabetic retinopathy in primary care, JAMA Network Open. 1 (2018), no. 5, e182665–e182665.
[23] N. Kaur, S. Chatterjee, M. Acharyya, J. Kaur, N. Kapoor and S. Gupta, A supervised approach for automated detection of haemorrhages in retinal fundus images, 5th Int. Conf. Wireless Networks Embed. Syst. (WECON), IEEE, 2016, pp. 1–5.
[24] A. Krizhevsky, I. Sutskever and G.E. Hinton, Imagenet classification with deep convolutional neural networks, Adv. Neural Info. Process. Syst. 25 (2012), 1097–1105.
[25] C. Lam, D. Yi, M. Guo and T. Lindsey, Automated detection of diabetic retinopathy using deep learning, AMIA Joint Summits Transl. Sci. Proc. 2018 (2018), 147–155.
[26] T. Li, Y. Gao, K. Wang, S. Guo, H. Liu and H. Kang, Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening, Info. Sci. 501 (2019), 511–522.
[27] X. Li, X. Hu, L. Yu, L. Zhu, C.-W. Fu and P.-A. Heng, CANet: Cross-disease attention network for joint diabetic retinopathy and diabetic macular edema grading, IEEE Trans. Med. Imag. 39 (2020), no. 5, 1483–1493.
[28] F. Li, Z. Liu, H. Chen, M. Jiang, X. Zhang and Z. Wu, Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm, Trans. Vis. Sci. Tech. 8 (2019), no. 6.
[29] Y.-P. Liu, Z. Li, C. Xu, J. Li and R. Liang, Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network, Artif. Intell. Med. 99 (2019), 101694.
[30] S. Patel, Diabetic retinopathy detection and classification using pre-trained convolutional neural networks, Int. J. Emerging Technol. 11 (2020), no. 3, 1082–1087.
[31] P. Prentašić and S. Lončarić, Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion, Comput. Meth. Prog. Biomed. 137 (2016), 281–292.
[32] P. Prentašić, S. Lončarić, Z. Vatavuk, G. Bencic, M. Subasic, T. Petkovic, L. Dujmović, M. Malenica-Ravlić, N. Budimlija and R. Tadić, Diabetic retinopathy image database (DRIDB): A new database for diabetic retinopathy screening programs research, 8th Int. Symp. Image Signal Process. Anal. (ISPA), 2013, pp. 711–716.
[33] R. Priya and P. Aruna, SVM and neural network based diagnosis of diabetic retinopathy, Int. J. Comput. Appl. 41 (2012), 6–12.
[34] M. Raju, P. Venkatesh, B. Ryan, A. Kadam, V. Kasivajjala and A. Aswath, Development of a deep learning algorithm for automatic diagnosis of diabetic retinopathy, Stud. Health Technol. Inf. 245 (2017), 559–563.
[35] O. Ronneberger, P. Fischer and T. Brox, U-net: convolutional networks for biomedical image segmentation, Int. Conf. Med. Image Comput. Computer-Assisted Interven., Springer, 2015, pp. 234–241.
[36] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:14091556, (2014).
[38] N. Tsiknakis, D. Theodoropoulos, G. Manikis, E. Ktistakis, O. Boutsora, A. Berto, F. Scarpa, A. Scarpa, D.I. Fotiadis and K. Marias, Deep learning for diabetic retinopathy detection and classification based on fundus images: A review, Comput. Bio. Med. 135 (2021), 104599.
[39] M.J. Van Grinsven, B. van Ginneken, C.B. Hoyng, T. Theelen and C.I. Sánchez, Fast convolutional neural network training using selective data sampling: Application to hemorrhage detection in color fundus images, IEEE Trans. Med. Imag. 35 (2016), no. 5, 1273–1284.
[40] S. Wan, Y. Liang and Y. Zhang, Deep convolutional neural networks for diabetic retinopathy detection by image classification, Comput. Electr. Eng. 72 (2018), 274–282.
[41] C.P. Wilkinson, F.L. Ferris III, R.E. Klein, P.P. Lee, C.D. Agardh, M. Davis, D. Dills, A. Kampik, R. Parara-jasegaram, J.T. Verdaguer and G.D.R.P. Group, Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales, Ophthalmology 110 (2003), no. 9, 1677–1682.
[42] W. Zhang, J. Zhong, S. Yang, Z. Gao, J. Hu, Y. Chen and Z. Yi, Automated identification and grading system of diabetic retinopathy using deep neural networks, Knowledge-Based Syst. 175 (2019), 12–25.