[1] K. Aas, C. Czado, A. Frigessi and H. Bakken, Pair-copula constructions of multiple dependence, Insurance: Math. Econ. 44 (2009), no. 2, 182–198.
[2] H. Boubaker and N. Sghaier, Portfolio optimization in the presence of dependent financial returns with long memory: A copula based approach, J. Bank. Finance 37 (2013), no. 2, 361–377.
[3] P. Christoffersen, P. Christoffersen, V. Errunza, K. Jacobs, K. Jacobs and X. Jin, Correlation dynamics and international diversification benefits, Int. J. Forecast. 30 (2014), no. 3, 807–824.
[4] D.G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika 65 (1978), no. 1, 141–151.
[5] J. Dismann, E.C. Brechmann, C. Czado and D. Kurowicka, Selecting and estimating regular vine copulae and application to financial returns, Comput. Statist. Data Anal. 59 (2013), 52–69.
[6] P. Embrechts, F. Lindskog and A. McNeil, Modelling dependence with copulas, Rapport Technique, Departement de math´ematiques, Institut Federal de Technologie de Zurich, Zurich, 14 (2001), 1–50.
[7] J. Estrada, Mean-semivariance behavior: Downside risk and capital asset pricing, Int. Rev. Econ. Financ. 16 (2007), no. 2, 169–185.
[8] M.F. Fallah and A. Alizadeh, Investigating performance of the extreme value theory and GARCH-Copula models in predicting the value at risk and expected fall of the portfolio in investment companies of Tehran Stock Exchange, Quarterly J. Financ. Eng. Secur. Manag. 12 (2021), no. 46, 340–364.
[9] S. Fallahpour and E. Ahmadi, Estimating the value at risk of oil and gold portfolio using GARCH-Copula models, Financ. Res. 16 (2014), no. 2, 309–326.
[10] S. Fallahpour and M. Baghban, Application of the CVaR-Capula in stock portfolio optimization and its comparative study with Mean-CVaR method, Quart. J. Econ. Res. Policy 22 (2014), no. 72, 155–172.
[11] M.J. Frank, On the simultaneous associativity of F(x, y) and x+y−F(x, y), Aeq. Math. 19 (1979), no. 1, 194–226.
[12] M. Ghandehari, A. Shamshiri and S. Fathi, Stock portfolio optimization based on non-parametric estimation methods, Prod. Oper. Manag. Quart. 8 (2017), no. 1, 175–184.
[13] E.J. Gumbel, Bivariate exponential distributions, J. Amer. Statist. Assoc. 55 (1960), no. 292, 698–707.
[14] Y. Han, P. Li and Y. Xia, Dynamic robust portfolio selection with copulas, Finance Res. Lett. 21 (2017), 190–200.
[15] M. Karmakar, Dependence structure and portfolio risk in Indian foreign exchange market: A GARCH-EVTCopula approach, Quart. Rev. Econ. Finance 64 (2017), 275–291.
[16] G. Keshavarz Haddad and M. Heirani, Estimating value at risk with dependence structure between financial returns: A copula function-based approach, J. Econ. Res. 49 (2014), no. 4, 869–902.
[17] A. Krzemienowski and S. Szymczyk, Portfolio optimization with a copula-based extension of conditional value-atrisk, Annal. Operat. Res. 237 (2016), no. 1-2, 219–236.
[18] C. Luo, L. Seco and L.L.B. Wu, Portfolio optimization in hedge funds by OGARCH and Markov switching model, Omega 57 (2015), 34–39.
[19] H. Markowitz, The utility of wealth, J. Politic. Econ. 60 (1952), no. 2, 151–158.
[20] D.B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica: J. Econ. Soc. 59 (1991), no. 2, 347–370.
[21] A. Patton, On the out-of-sample importance of skewness and asymmetric dependence for asset allocation, J. Financ. Econ. 2 (2004), no. 1, 130–168.
[22] E. Pishbahar and S. Abedi, Calculating the portfolio value at risk: Capillary approach, Quarterly J. Financ. Eng. Secur. Manag. 8 (2017), no. 30, 55–73.
[23] S.-H. Poon, M. Rockinger and J. Tawn, Modelling extreme-value dependence in international stock markets, Statist. Sinica 13 (2004), 929–953.
[24] A. Pouyanfar and S.H. Mousavi, Estimating the value at risk of overnight data with EVT-Copula approach, Quart. J. Risk Model. Financ. Engin. 1 (2015), no. 2, 129–144.
[25] M. Sahamkhadam, A. Stephan and R. Ostermark, Portfolio optimization based on GARCH-EVT-Copula forecasting models, Int. J. Forecast. 34 (2018), no. 3, 497–506.
[26] A. Sklar, Fonctions de repartition an dimensions et leurs marges, Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231.
[27] P. Xue-Kun Song, Multivariate dispersion models generated from Gaussian copula, Scand. J. Statist. 27 (2000), no. 2, 305–320.