Characterization of Bloch type spaces and symmetric lifting operator

Document Type : Research Paper


1 Engineering Faculty of Khoy, Urmia University of Technology, Urmia, Iran

2 Department of Mathematics, Lorestan University, Khorramabad, Iran


In this paper we first study the characterization of Bloch space in terms of pseudo-hyperbolic metric. Then the action of symmetric lifting operator on weighted Bloch spaces will be studied.


[1] P. Duren and A. Schuster, Bergman Spaces, American Mathematical Society, Providence, Rhode Island, 2003.
[2] M. Hassanlou and H. Vaezi, Double integral characterization for Bergman spaces, Iran. J. Math. Sci. Inf. 11 (2016), no. 1, 27–34.
[3] H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman Spaces, Springer, New York, 2000.
[4] S. Li and H. Wulan, Characterizations of α-Bloch spaces on the unit ball, J. Math. Anal. Appl. 343 (2008), no. 1, 58–63.
[5] S. Li and H. Wulan, Some new characterzation of Bloch type spaces, Taiwanese J. Math. 14 (2010), no. 6, 2245–2259.
[6] S. Li, H. Wulan, R. Zhao and K. Zhu, Characterization of Bergman spaces on the unit ball of Cn, Glasgow Math. J. 51 (2009), no. 2, 315–330.
[7] S. Li, H. Wulan, and K. Zhu, A Characterization of Bergman spaces on the unit ball of Cn II, Canad. Math. Bull. 55 (2012), 146–152.
[8] S. Ohno, K. Stroethoff and R.H. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191–215.
[9] J.H. Shi and L. Luo, Composition operators on the Bloch space of several complex variables, Acta Math. Sinica English Ser. 16 (2000), 85–98.
[10] M. Stessin and K. Zhu, Composition operators on embedded disks, J. Operator Theory 56 (2006), 423–449.
[11] R. Timiney, Bloch function in several complex variables, I, Bull. London Math. Soc. 37 (1980), no. 12, 241–267.
[12] R. Timoney, Bloch function in several complex variables, II, J. Riene Angew. Math. 319 (1998), 1–22.
[13] H. Wulan and K. Zhu, Lipschitz type characterizations for Bergman spaces, Canad. Math. Bull. 52 (2009), no. 4, 613–626.
[14] R. Zhao, A characterization of Bloch-type spaces on the unit ball of Cn, J. Math. Anal. Appl. 330 (2007), no. 1, 291–297.
[15] Z.H. Zhou and J.H. Shi, Compact composition operators on the Bloch space in polydiscs, Sci.China Ser. A 44 (2001), 286–291.
[16] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005.
Volume 14, Issue 7
July 2023
Pages 321-326
  • Receive Date: 06 June 2022
  • Revise Date: 30 July 2022
  • Accept Date: 24 August 2022
  • First Publish Date: 09 November 2022