[1] B. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fundam. Math. 3 (1922), 133–145.
[2] L. Ciric, Fixed points for generalized multi-valued mappings, Mat. Vesnik 24 (1972), 265–272.
[3] N.V. Dung and V.L. Hang, A fixed point theorem for generalized F-contractions on complete metric spaces, Vietnam J. Math. 43 (2015), 743–753.
[4] J. Gornicki, Fixed point theorems for F-expanding mappings, Fixed Point Theory Appl. 9 (2017), 1–10.
[5] M. Jleli, B. Samet, and C. Vetro, Fixed point theory in partial metric spaces via φ-fixed point concept in metric spaces, J. Inequal. Appl. 426 (2014), no. 1, 1–9.
[6] M. Kumar and S. Arora, Fixed point theorems for modified generalized F-contraction in G-metric spaces, Bol. Soc. Paran. Mat. 40 (2022), 1–8.
[7] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal. 7 (2006), no. 2, 289–297.
[8] H.N. Saleh, M. Imdad and W.M. Alfaqih, Some metrical φ-fixed point results of Wardowski type with applications to integral equations, Bol. Soc. Paran. Mat. 40 (2022), 1–11.
[9] H. Piri and P. Kumam, Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory Appl. 45 (2016), 1–12.
[10] H. Piri and P. Kumam, Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl. 210 (2014), 1–13.
[11] D. Wardowski and N.V. Dung, Fixed points of F-weak contractions on complete metric spaces, Demonst. Math. 47 (2014), 146–155.
[12] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 94 (2012), 1–6.