[1] F. Comte and M.-L. Taupin, Nonparametric estimation of the regression function in an errors-in-variables model, Statistica Sinica 17 (2007), no. 3, 1065-1090.
[2] C.-L. Cheng and H. Schneeweiss, Polynomial regression with errors in the variables, J. Roy. Stat. Soc. Ser. B Stat. Methodol. 60 (1998), 189—199.
[3] C. Chesneau, On adaptive wavelet estimation of the regression function and its derivatives in an errors-in-variables model, Current Dev. Theory Appl. Wavelets 4 (2010), 185–208.
[4] D.L. Donoho and I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage, J. Amer. Statist. Assoc. 90 (1995), no. 432, 1200–1224.
[5] J. Fan and J.Y. Koo, Wavelet deconvolution, IEEE Trans. Inf. Theory 48 (2002), 734—747.
[6] J. Fan and M. Masry, Multivariate regression estimation with errors-in-variables: Asymptotic normality for mixing process, J. Multivariate Anal. 43 (1992), 237–272.
[7] J. Fan and Y.K. Truong, Nonparametric regression with errors-in-variables, Ann. Statist. 21 (1993), no. 4, 1900–1925.
[8] J. Fan, Y.K. Truong and Y. Wang, Nonparametric function estimation involving errors-in-variables, Springer, 1991.
[9] W. Hardle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelet, Approximation and Statistical Applications, Lectures Notes in Statistics, Springer Verlag, New York, 1998.
[10] P. Hall, G. Kerkyacharian D. Picard, On the minimax optimality of block thresholded wavelet estimators, Ann. Statist. 9 (1999), 33—50.
[11] D.A. Ioannides and P.D. Alevizos, Nonparametric regression with errors in variables and applications, Statist. Probab. Lett. 32 (1997), 35–43.
[12] I.M. Johnstone, G. Kerkyacharian, D. Picard and M. Raimondo, Wavelet deconvolution in a periodic setting, J. Roy. Statist. Soc. Ser. B 66 (2004), no. 3, 547—573.
[13] M.C. Jones, Estimating densities, quantiles, quantile densities and density quantiles, Ann. Inst. Statist. Math. 44 (1992), no. 4, 721–727.
[14] K. Kato and Y. Sasaki, Uniform confidence bands for nonparametric errors-in-variables regression, J. Econ. 213 (2019), no. 2, 516–555.
[15] J.Y. Koo and K.W. Lee, B-splines estimations of regression functions with errors in variables, Statist. Probab. Lett. 40 (1998), 57–66.
[16] M. Pensky and B. Vidakovic, Adaptive wavelet estimator for nonparametric density deconvolution, Ann. Statist. 27 (1999), 2033—2053.
[17] E. Masry, Multivariate regression estimation with errors-in-variables for stationary processes, Nonparamet. Statist. 3 (1993), 13–36.
[18] S. Mallat, A wavelet tour of signal processing, Elsevier/ Academic Press, Amsterdam, 2009.
[19] Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, 1992
[20] N.U. Nair, P.G. Sankaran and B.V. Kumar, Total time on test transforms of order n and its implications in reliability analysis, J. Appl. Probab. 45 (2008), 1126–1139.
[21] N.U. Nair and P.G. Sankaran, Quantile based reliability analysis, Commun. Statist.: Theory Meth. 38 (2009), 222–232.
[22] E. Parzen, Non parametric statistical data modeling, J. Amer. Statist. Assoc. 74 (1979), 105–122.
[23] L. Peng and J.P. Fine, Nonparametric quantile inference with competing risks data, Biometrika 94 (2007), 735–744.
[24] N. Reid, Estimating the median survival time, Biometrika 68 (1981), 601–608.
[25] P.G. Sankaran and N.U. Nair, Nonparametric estimation of hazard quantile function, J. Nonparamet. Statist. 21 (2009), 757–767.
[26] P.G. Sankaran, I. Dewan and E.P. Sreedevi, A non-parametric test for stochastic dominance using total time on test transform, Amer. J. Math. Manag. Sci. 34 (2015), 162–183
[27] E. Shirazi, Y. Chaubey, H. Doosti, H.A. Nirumand, Wavelet-based estimation for the derivative of a density by block thresholding under random censorship, J. Korean Statist. Soc. 41 (2012), 199—211.
[28] E. Shirazi, H. Doosti, H.A. Niroumand and N. Hosseinioun, Nonparametric regression estimate with censored data based on block thresholding method, J. Statist. Plan. Infer., 143 (2013), 1150–1165.
[29] E.V. Slud, D.P. Byar and S.B. Green, A comparison of reflected versus test-based 355 confidence intervals for the median survival time, based on censored data, Biometrics 40 (1984), 587–600.
[30] P. Soni, I. Dewan and K. Jain, Nonparametric estimation of quantile density function, Comput. Statist. Data Anal. 56 (2012), no. 12, 3876–3886.
[31] J.Q. Su and L.J. Wei, Nonparametric estimation for the difference or ratio of median failure times, Biometrics 49 (1993), 603—607.