[1] A. Abu-Rmileh, W. Garcia-Gabin, and D. Zambrano, Internal model sliding mode control approach for glucose regulation in type 1 diabetes, Biomed. Signal Process. Control 5 (2010), no. 2, 94–102.
[2] E. Ackerman, L.C. Gatewood, J.W. Rosevear and G.D. Molnar, Model studies of blood-glucose regulation, Bull. Math. Biophys. 27 (1965), no. 1, 21–37.
[3] S. Ahmad, N. Ahmed, M. Ilyas and W. Khan, Super twisting sliding mode control algorithm for developing artificial pancreas in type 1 diabetes patients, Biomed. Signal Process. Control. 38 (2017), 200–211.
[4] R.N. Bergman, Y.Z. Ider, C.R. Bowden and C. Cobelli, Quantitative estimation of insulin sensitivity, Amer. J. Physio.-Endocr. Metabol. 236 (1979), no. 6.
[5] V.W. Bolie, Coefficients of normal blood glucose regulation, J. Appl. Physiol. 16 (1961), no. 5, 783–788.
[6] C. Cobelli and A. Mari, Validation of mathematical models of complex endocrine-metabolic systems: a case study on a model of glucose regulation, Medic. Bio. Engin. Comput. 21 (1983), no. 4, 390-–399.
[7] C. Dalla Man, R.A. Rizza and C. Cobelli, Meal simulation model of the glucose-insulin system, IEEE Trans. Biomed. Engin. 54 (2007), no. 10, 1740–1749.
[8] M. Djouima, A. Taher Azar, S. Drid and D. Mehdi, Higher order sliding mode control for blood glucose regulation of type 1 diabetic patients, Int. J. Syst. Dyn. Appl. 7 (2018), no. 1, 65–84.
[9] L. DiMeglio, C. Molina and R. Oram, Type 1 diabetes, Lancet 391 (2018), 2449–2462
[10] W. Garcia-Gabin, J. Veh´ı, J. Bondia, C. Tar´ın and R. Calm, Robust sliding mode closed-loop glucose control with meal compensation in type 1 diabetes mellitus, IFAC Proc. 41 (2008), no. 2, 4240–4245.
[11] R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-Benedetti, M.O. Federici, T.R. Pieber, H.C. Schaller, L. Schaupp, T. Vering and M.E. Wilinska, Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes, Physiol. Measurement 25 (2004), no. 4, 905.
[12] J. Jaremko and O. Rorstad, Advances toward the implantable artificial pancreas for treatment of diabetes, Diabetes Care 21 (1998), no. 3, 444–450.
[13] E.D. Lehmann, T. Deutsch, A physiological model of glucose–insulin interaction in type 1 diabetes mellitus, J. Biomed. Engin. 14 (1992), no. 3, 235-–242.
[14] P. Kaveh and Y. Shtessel, Blood glucose regulation using higher-order sliding mode control, J. Robust Nonlinear Control. 18 (2008), no. 4-5, 557–569.
[15] C. Li and R. Hu, PID control based on BP neural network for the regulation of blood glucose level in diabetes, Proc. 7th IEEE Int. Conf. Bioinf. Bioengin., 2007, pp. 1168–1172.
[16] G. Marchetti, M. Barolo, L. Jovanovic, H. Zisser and D. Seborg, An improved PID switching control strategy for
type 1 diabetes, IEEE Trans. Biomed. Eng. 55 (2008), no. 3, 857–865.
[17] D.N. Maryam Abadi, A. Alfi and M. Siahi, An improved fuzzy PI controller for type 1 diabetes”, R. J. Appl. Sci. Engin. Technol. 4 (2012), no. 2, 4417–4422.
[18] H. Roman, V. Canonico, L. Chassin, U. Haueter, M. Massi-Benedetti, M. Orsini Federici, T.R. Pieber, H.C. Schaller, L. Schaupp, T. Vering and M.E. Wilinska, Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes, Physiol. Measurement 25 (2004), no. 4.
[19] E. Ruiz-Velazquez, R. Femat and D. Campos-Delgado, Blood glucose control for type 1 diabetes mellitus: A robust tracking H∞ problem, Control Engin. Practice 12 (2004), no. 9, 1179–1195.
[20] J.T. Sorensen, A physiologic model of glucose metabolism in man and its useto design and assess improved insulin therapies for diabetes, Doctoral Dissertation, Massachusetts Institute of Technology, 1985.
[21] N.P. Tadrisi, A.R. Vali and R. Ghasemi, Back stepping sliding mode control of blood glucose for type I diabetes, Int. J. Medic. Health Biomed. Bioengin. Pharm. Engin. 8 (2014), no. 11, 779–783.
[22] B. Topp, K. Promislow and G. De Vries, A model of β-cell mass, insulin and glucose kinetics: Pathways to diabetes, J. Theor. Bio. 206 (2000), no. 4, 605–619.
[23] K. van Heusden, E. Dassau, H.C. Zisser, D.E. Seborg and F.J. Doyle III, Control-relevant models for glucose control using a priori patient characteristics, IEEE Trans. Biomed. Eng. 9 (2012), no. 7, 1839–1849.
[24] S. Yasini, M.B. Naghibi-Sistani and A. Karimpour, Active insulin infusion using fuzzy-based closed loop control, 3rd Int. Conf. Intel. Syst. Knowledge Engin., Mashhad, 2008, pp. 429–434.
[25] J. Wang, Ch. Liu, Y. Wang and G. Zheng, Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system, Chinese Phys. B 27 (2018), no. 7.