[1] S.A. Berg, F.R. Forsund and E.S. Jansen, Malmquist indices of productivity growth during the deregulation of Norwegian banking, 1980-89, Scand. J. Econ. 94 (1992), 211–228.
[2] D.W. Caves, L.R. Christensen and W. Erwin Diewert, The economic theory of index numbers and the measurement of input, output, and productivity, Econometrica: J. Econometric Soc. 50 (1982), no. 6, 1393–1414.
[3] A.S. Camanho and R.G. Dyson, Data envelopment analysis and Malmqutist indices for measuring group performance, J. Prod. Anal. 26 (2006), 35–49.
[4] A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res. 2 (1978), no. 6, 429–444.
[5] H. Essid, P. Ouellette and S. Vigeant, Productivity, efficiency, and technical change of Tunisian schools: A bootstrapped Malmquist approach with quasi-fixed inputs, Omega 42 (2014), no. 1, 88–97.
[6] A. Emrouznejad, G.R. Amin, E. Thanassoulis and A.L. Anouze, On the boundedness of the SORM DEA models with negative data, Eur. J. Oper. Res. 206 (2010), 265–268.
[7] A. Emrouznejad, A.L. Anouze, E. Thanassoulis, A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA. Eur. J. Oper. Res. 200 (2010), no. 1, 297–304.
[8] R. Fare, S. Grosskopf, M. Norris and Z. Zhang, Productivity growth, technical progress and efficiency change in industrialized countries, Amer. Econ. Rev. 1 (1994), 66–83.
[9] M.J. Farrell, The measurement of productive efficiency, J. Roy. Statist. Soc. Ser. A (General) 120 (1957), no. 3, 253–281.
[10] E. Grifell-Tatje, C.A. Knox Lovell, and J.T. Pastor., A quasi-Malmquist productivity index, J. Prod. Anal. 10 (1998), no. 1, 7–20.
[11] G. Halkos and K.N. Petrou, Treating undesirable outputs in DEA: A critical review, Econ. Anal. Policy 62 (2019),97–104.
[12] S.Z. Hosseini, F. Hosseinzadeh Lotfi and M. Ahadzadeh, Presenting a model for evaluating regional electricity companies in 2016, Fifteenth Nat. Conf. Data Env. Anal., Shiraz, September, 2017.
[13] T. Joro and P. Korhonen, Extension of Data Envelopment Analysis with Preference Information, Springer, 2015.
[14] S. Kaffash, E. Aktas and M. Tajikk, The impact of oil price changes on efficiency of banks: An application in the Middle East oil exporting countries using SORM-DEA, RAIRO-Oper. Res. 54 (2020), 719–748.
[15] S. Kaffash, R. Kazemi Matin and M. Tajik, A directional semi-oriented radial DEA measure: an application on financial stability and the efficiency of banks, Ann. Oper. Res. 264 (2018), 213–234.
[16] R. Kazemi Matin, G.R. Amin and A. Emrouznejad, A modified semi-oriented radial measure for target setting with negative data, Measurement 54 (2014), 152–158.
[17] R. Kazemi Matin and R. Azizi, A two-phase approach for setting targets in DEA with negative data, Appl. Math. Model. 35 (2011), 5794–5803.
[18] M. Khoveyni, R. Eslami and G.-L. Yang, Negative data in DEA: Recognizing congestion and specifying the least and the most congested decision making units, Comput. Oper. Res. 79 (2017), 39–48.
[19] N. Kiani Mavi and R. Kiani Mavi, Energy and environmental efficiency of OECD countries in the context of the circular economy: Common weight analysis for Malmquist productivity index, J. Envir. Manag. 247 (2019), 651–661.
[20] R. Lin, W. Yang, and H. Huang, A modified slacks-based super-efficiency measure in the presence of negative data, Comput. Ind. Engin. 135 (2019), 39–82.
[21] L. Orea, Parametric decomposition of a generalized Malmquist productivity index, J. Prod. Anal. 18 (2002), no. 1, 5–22.
[22] J.T. Pastor and C.A. Knox Lovell, A global Malmquist productivity index, Econ. Lett. 88 (2005), no. 2, 266–271.
[23] M. Soltanifar and H. Sharafi, A modified DEA cross efficiency method with negative data and its application in supplier selection, J. Combin. Optim. 43 (2022), 265–296.
[24] K. Tone, Malmquist Productivity Index, Springer, Boston, MA, 2004.
[25] K. Wang, S. Yu and W. Zhang., China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation, Mathematical and Computer Modelling 58(2013), no. 5-6, 1117–1127.
[26] Z. Zhou, G. Xu, C. Wang and J. Wu, Modeling undesirable output with a DEA approach based on an exponential transformation: An application to measure the energy efficiency of Chinese industry, J. Cleaner Prod. 236 (2019), 117717.