[1] R.P. Agarwal, M.A. El-Gebbeily and D. Oregan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87 (2008), no. 1, 109–116.
[2] A. Amini-Harandi and H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equation, Nonlinear Anal. 72 (2010), no. 5, 2238–2242.
[3] S. Banach, sur les operations dans les ensembles abstraits et leur applications aux ´equations integral, Fund. Math. 3 (1992), 133–181.
[4] P. Chaipunya, C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed point theorems for multivalued mappings in modular metric spaces, Abstr. Appl. Anal. 2012 (2012), 1–14.
[5] V.V. Chystyakov, Modular metric spaces generated by F-modulars, Folia Math. 15 (2008), no. 1, 3–24.
[6] V.V. Chystyakov, Modular metric spaces I: Basic concepts, Nonlinear Anal. 72 (2010), no. 1, 1–14.
[7] V.V. Chystyakov, Modular metric spaces II: Application to superposition operators, Nonlinear Anal. 72 (2010), no. 1, 15–30.
[8] V.V. Chystyakov, A fixed point theorem for contractions in modular metric spaces, arXiv preprint arXiv:1112.5561 (2011).
[9] T. Gnana Bhaskar and V. Lakshmikantham, Fixed point theorem in partially ordered metric space with applications, Nonlinear Anal. 65 (2006), no. 7, 1379–1393.
[10] K. Goebd and W.A. Kirk, Topics in metric fixed point theory, Cambridge Studies in Advanced Mathematics, 28. Cambridge University Press, Cambridge, 1990.
[11] J. Harjani and K. Sadarangani, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Anal. 72 (2010), no. 3-4, 1188–1197.
[12] M.A. Khamsi, W.M. Kozlowski and S. Reich, Fixed point theory in modular function spaces, Nonlinear Anal. 14 (1990), no. 11, 935–953.
[13] C. Mongkolkeha, W. Sintunavarat and P. Kumam, Fixed point theorem for contraction mappings in modular metric spaces, Fixed Point Theory Algorithms Sci. Eng. 2011 (2011), no. 93, 1–9.
[14] J. Musielak and W. Orlicz, On modular spaces, Studia Math. 18 (1959), 49–65.
[15] H. Nakano, Modular semi-ordered spaces, Maruzen Co., Ltd., Tokyo, 1950.
[16] J.J. Nieto and R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sin. English Ser. 23 (2007), 2205–2212.
[17] H. Rahimpoor, A. Ebadian, M. Eshaghi Gordji and A. Zohri, Fixed point theory for generalized quasi-contraction maps in modular metric spaces, J. Math. Comput. Sci. 10 (2014), no. 1, 54–60.
[18] H. Rahimpoor, A. Ebadian, M. Eshaghi Gordji and A. Zohri, Some fixed point theorems on modular metric spaces, Acta Univ. Apulensis 37 (2014), no. 37, 161–170.