[1] B. Beumer, M. Kovcs and M.M. Meerschaert, Numerical solutions for fractional reaction diffusion equations, Comput. Math. Appl. 55 (2008), 2212–2226.
[2] L. Chen, R.H. Nochetto, E. Otsarola and A.J. Salgado, Multilevel methods for nonuniformly elliptic operators and fractional diffusion, Math. Comput. 85 (2016), 2583–2607.
[3] W. Deng, Finite element method for the space and time fractional Fokker–Planck equation, SIAM J. Numer. Anal. 47 (2008), 204–226.
[4] N. Engheta, Fractional curl operator in electromagnetics, Microw. Opt. Technol. Lett. 17 (1998), no. 2, 86–91.
[5] J.F. Kelly, R.J. McGough and M.M. Meerschaert, Analytical time-domain Green’s functions for power-law media, J. Acous. Soc. Amer. 124 (2008), 2861–2872.
[6] S. Kumar, S. Kumar and S. Sumit, A posteriori error estimation for quasilinear singularly perturbed problems with integral boundary condition, Numer. Algor. 89 (2022), 791-–809.
[7] S. Kumar, S. Kumar and Sumit, High-order convergent methods for singularly perturbed quasilinear problems with integral boundary conditions, Math. Method Appl. Sci, (2020), https://doi.org/10.1002/mma.6854.
[8] K. Kumar, R.K. Pandey, S. Sharma and Y. Xu, Numerical scheme with convergence for a generalized time-fractional Telegraph-type equation, Numer. Meth. Partial Differ. Equ. 35 (2019), no. 3, 1164–1183.
[9] K. Kumar, R.K. Pandey and F. Sultana, Numerical schemes with convergence for generalized fractional integrodifferential equations, J. Comput. Appl. Math. 388 (2021), no. 1, 113318.
[10] S. Kumar, S. Sumit and J.V. Aguiar, A high order convergent numerical method for singularly perturbed time-dependent problems using mesh equidistribution, Math. Comput. Simul. 199 (2022), 287–306.
[11] S. Kumar, S. Sumit and J.V. Aguiar, A parameter-uniform grid equidistribution method for singularly perturbed degenerate parabolic convection–diffusion problems, J. Comput Appl. Math. 404 (2022), 113273.
[12] X. Li and C. Xu, The existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation, Commun. Comput. Phys. 8 (2010), 1016–1051.
[13] C. Li and F. Zeng, Numerical Methods for Fractional Calculus, Chapman and Hall/CRC, 2015.
[14] F.R. Lin, S.W. Yang and X.Q. Jin, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys. 256 (2014), 109–117.
[15] F. Liu, V. Anh and I. Turner, Numerical solution of the space fractional Fokker–Planck equation, J. Comput. Appl. Math. 166 (2004), 209–219.