[1] Zh. Chenghang, X. Zhang, Zh. Yang, Ch. Liang, Y. Guo, Y. Wang and X. Gao, Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect, J. Aerosol Sci. 118 (2018), 22–33.
[2] G.B. David, V.S. Garimella, T.S. Fisher and R.K. Mongia, Ionic winds for locally enhanced cooling, J. Appl. Phys. 102 (2007), no. 5, 053302.
[3] C.F. Dorian, A. Ferret, D.Z. Pai, D.A. Lacoste and Ch.O. Laux, Ionic wind generation by a wire-cylinder-plate corona discharge in air at atmospheric pressure, J. Appl. Phys. 108 (2010), no. 10, 103306.
[4] R. Durscher and S. Roy, Evaluation of thrust measurement techniques for dielectric barrier discharge actuators, Exper. Fluids 53 (2012), no. 4, 1165–1176.
[5] M. Eric, N. Benard, J.D. Lan-Sun-Luk and J.P. Chabriat, Electrohydrodynamic force produced by a wire-to-cylinder dc corona discharge in air at atmospheric pressure, J. Phys. D: Appl. Phys. 46 (2013), no. 47, 475204.
[6] M. Eric and G. Touchard, Enhancing the mechanical efficiency of electric wind in corona discharges, J. Electrost. 66 (2008), no. 1-2, 39–44.
[7] H.X. Haofeng, Y. He, K.L. Strobel, Ch.K. Gilmore, S.P. Kelley, C.C. Hennick, Th. Sebastian, M.R. Woolston, D.J. Perreault and S.R.H. Barrett, Flight of an aeroplane with solid-state propulsion, Nature 563 (2018), no. 7732, 532–535.
[8] K. Hiroyuki and S. Umezu, Electrohydrodynamic deformation of water surface in a metal pin to water plate corona discharge system, J. Phys. D: Appl. Phys. 38 (2005), no. 6, 887.
[9] E. Karakas, A. Begum and M. Laroussi, A positive corona-based ion wind generator, IEEE Trans. Plasma Sci. 36 (2008), no. 4, 950–951.
[10] K.N. Kiousis, A.X. Moronis and W.G. Fruh, Electro-hydrodynamic, thrust analysis in wire-cylinder electrode arrangement, Plasma Sci. Technol. 16 (2014), no. 4, 363.
[11] L. Luc, E. Moreau, G. Artana and G. Touchard, Influence of a DC corona discharge on the airflow along an inclined flat plate, J. Electrost. 51 (2001), 300–306.
[12] R. Mestiri, R. Hadaji and S. Ben Nasrallah, An experimental study of a plasma actuator in absence of free airflow: Ionic wind velocity profile, Phys. Plasmas 17 (2010), no. 8, 083503.
[13] Y.P. Raizer and J.E. Allen, Gas Discharge Physics, Springer, Berlin, 1991.
[14] G.N. Trinh and J.B. Jordan, Modes of corona discharges in air, IEEE Trans. Power Apparatus Syst. 5 (1968), 1207-1215.
[15] Q. Wei, L. Xia, L. Yang, Q. Zhang, L. Xiao and L. Chen, Experimental study on the velocity and efficiency characteristics of a serial staged needle array-mesh type EHD gas pump, Plasma Sci. Technol. 13 (2011), no. 6, 693.
[16] L. Xiangchao, L. Cai, X. Xu, Zh. Wan, X. Ma and Y. Liu, Analysis on corona discharge electrical characteristics of wind turbine blades, Int. J. Appl. Electromag. Mech. 60 (2019), no. 1, 91–101.
[17] Y. Yonggang, H. Junping, A. I. Zhongliang, Y. Lanjun and Zh. Qiaogen, Experimental studies of the enhanced heat transfer from a heating vertical flat plate by ionic wind, Plasma Sci. Technol. 8 (2006), no. 6, 697.
[18] Y.T. Zhang, C.D. Hu and P. Sheng, Design of timing synchronization software on EAST-NBI, Plasma Sci. Technol. 15 (2006), no. 12, 438.
[19] T. Zhang, Y. Zhang, Q. Ji, B. Li and J. Ouyang. Characteristics and underlying physics of ionic wind in DC corona discharge under different polarities, Chinese Phys. B 28 (2019), no. 7, 075202.