[1] T. Acar, A. Aral and V. Gupta, On approximation properties of a new type of Bernstein-Durrmeyer operators, Math. Slovaca 65(5) (2015), 1101–1122.
[2] T. Acar, A.M. Acu and N. Manav, Approximation of functions by genuine Bernstein-Durrmeyer type operators, J. Math. Inequal. 12 (2018), no. 4, 975–987.
[3] T. Acar, P.N. Agrawal and T. Neer, Bezier variant of the Bernstein-Durrmeyer type operators, Results Math. 72 (2017), 1341–1358.
[4] T. Acar, A. Aral and I. Rasa, Positive linear operators preserving τ and τ2, CMA 2 (2019), no. 3, 98–102.
[5] A.M. Acu, T. Acar and VA. Radu, Approximation of modified Uρn operators, RACSAM 113 (2019), 2715–2729.
[6] A.M. Acu, V. Gupta and G. Tachev, Better numerical approximation by Durrmeyer type operators, Results Math. 74 (2019), no. 3, 1–24.
[7] R.P. Agrawal and V. Gupta, On q analogue of a complex summation-integral type operators in compact disks, J. Inequal. Appl. 2012 (2012), 1–13.
[8] K.J. Ansari, S. Rahman and M. Mursaleen, Approximation and error estimation by modified P˘alt˘anea operators associating Gould-Hopper polynomials, RACSAM 113 (2019), 2827–2851.
[9] K.J. Ansari, M.A. Salman, M. Mursaleen and A.H.H. Al-Abied, On Jakimovski-Leviatan-P˘alt˘anea approximating operators involving Boas-Buck-type polynomials, J. King Saud. Univ. Sci. 32 (2020), 3018–3025.
[10] K.J. Ansari and F. Usta, A generalization of Szasz-Mirakyan operators based on α non-negative parameter, Symmetry 14 (2022), no. 8, 1–19.
[11] S.N. Bernstein, Demonstration du theoreme de Weierstrass fondee sur le calculdes probabilities, Commun. Soc. Math. Kharkov 13 (1913), 1–2.
[12] P.L. Butzer, Linear combinations of Bernstein polynomials, Canad. J. Math. 5 (1953), no. 2, 559–567.
[13] X. Chen, J. Tan, Z. Liu and J. Xie, Approximation of functions by a new family of generalized Bernstein operators, J. Math. Anal. Appl. 450 (2017), 244–261.
[14] M.M. Derriennic, Sur l approximation des fonctions integrables par des polynomes de Bernstein modifies, J. Approx. Theory 31 (1981), 325–343.
[15] J.L. Durrmeyer, Une formule d’inversion de la transformee de Laplace: Applications a La Theorie des Moments, These de 3e cycle, Faculte des Sciences de l’ Universite de Paris, 1967.
[16] S.G. Gal and V. Gupta, Quantitative estimates for a new complex Durrmeyer operators in compact disks, Appl. Math. Comput. 218 (2011), 2944–2951.
[17] H. Gonska, Quantitative Aussagen zur Approximation durch positive lineare operatoren, Ph.D. thesis, Universit at Duisburg, 1979.
[18] V. Gupta, Some approximation properties of q−Durrmeyer operators, Appl. Math. Comput. 197 (2008), 172–178.
[19] V. Gupta and MT. Rassias, Moments of linear positive operators and approximation, Springer New York, 2019.
[20] V. Gupta, G. Tachev and A.M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algor. 81 (2019), 125–149.
[21] A. Kajla and T. Acar, A new modification of Durrmeyer type mixed hybrid operators, Carpathian J. Math. 34 (2018), no. 1, 47–56.
[22] A. Kajla and T. Acar, Blending type approximation by generalized Bernstein-Durrmeyer type operators, Miskolc. Math. Notes 19 (2018), no. 1, 319–336.
[23] A. Kajla and T. Acar, Modified α-Bernstein operators with better approximation properties, Ann. Funct. Anal. 10 (2019), 570–582.
[24] A. Kajla and M. Goyal, Generalized Bernstein-Durrmeyer operators of blending type, Afr. Mat. 30 (2019), 1103–1118.
[25] H. Khosravian-Arab, M. Dehghan and M.R. Eslahchi, A new approach to improve the order of approximation of the Bernstein operators: Theory and applications, Numer. Algor. 77 (2018), no. 1, 111–150.
[26] C.A. Micchelli, Saturation classes and iterates of operators, Ph. D. Thesis, Stanford University, 1969.
[27] S.A. Mohiuddine, T. Acar and M.A. Alghamdi, Genuine modified Bernstein-Durrmeyer operators, J. Inequal. Appl. 2018 (2018), 1–13.
[28] M. Mursaleen, A.H.H. Al-Abied and K.J. Ansari, Approximation by Jakimovski-Leviatan-P˘alt˘anea approximating operators involving Sheffer polynomials, RACSAM 113 (2019), 1251–1265.
[29] D. Occorsio, MG. Russo and W. Themistoclakis, Some numerical applications of generalized Bernstein operators, CMA 4 (2021), no. 2, 186–214.
[30] R. Paltanea, A class of Durrmeyer type operators preserving linear functions, Ann. Tiberiu Popoviciu Sem. Funct. Equat. Approxim. Convex. (Cluj-Napoca) 5 (2007), 109–117.
[31] G.M. Phillips, Bernstein polynomials based on the q-integers, The heritage of P. L. Chebyshev: A Festschrift in honor of the 70th-birthday of professor T. J. Rivlin. Ann. Numer. Math. 4 (1997), 511–518.