[1] R.E. Bellman, L.A. Zadeh, Decision making in a fuzzy environment, Manag. Sci. 17 (1970), 141–164.
[2] K.J. Cormican, D.P. Morton and R.K. Wood, Stochastic network interdiction, Oper. Res. 46 (1998), 184–197.
[3] A. Ebrahimnejad, S.H. Nasseri, F. HosseinzadehLotfi and M. Soltanifar, A primal-dual method for linear programming problems with fuzzy variables, Eur. J. Ind. Engin. 4 (2010), no. 2, 189–209.
[4] M. Ghatee and S.M. Hashemi, Application of fuzzy minimum cost flow problems to network design under uncertainty, Fuzzy Sets Syst. 160 (2009), no. 22, 3263–3289.
[5] R. Keshavarzi and H. Salehi Fathabadi, Multi-source-sinks network flow interdiction problem, Int. J. Acad. Res. 7 (2015), no. 2, 108–115.
[6] P. Kundu, S. Kar and M. Maiti, Multi-objective solid transportation problems with budget constraint in uncertain environment, Int. J. Syst. Sci. 45 (2014a), no. 8, 1668—1682.
[7] P. Kundu, S. Majumder, S. Kar and M. Maiti, A method to solve linear programming problem with interval type-2 fuzzy parameters, Fuzzy Optim. Decis. Mak. 18 (2019), 103–130.
[8] B. Liu and K. Iwamura, Chance constrained programming with fuzzy parameters, Fuzzy Sets Syst. 94 (1998), no. 2, 227—237.
[9] N. Mahdavi-Amiri and S.H. Nasseri, Fuzzy primal simplex algorithms for solving fuzzy linear programming problems, Iran. J. Oper. Res. 1 (2009), no. 2, 68–84.
[10] H. Tanaka, T. Okuda and K. Asai, On fuzzy mathematical programming, J. Cybernet. 3 (1974), 37–46.
[11] R.D. Wollmer, Algorithm for targeting strikes in a lines-of-communication network, Oper. Res. 18 (1970a), 497–515.
[12] R.K. Wood, Deterministic network interdiction, Math. Comput. Model. 17 (1993), 1–18.
[13] L. Yang, L. Liu, Fuzzy fixed charge solid transportation problem and algorithm, Appl. Soft Comput. 7 (2007), 879—889.
[14] H.J. Zimmermann, Fuzzy Set Theory and its Applications, Kluwer Academic Publishers, 1991.